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A coupled elastoplastic-damage constitutive model with Lode angle dependent failure criterion for high
strain and ballistic applications is presented. A Lode angle dependent function is added to the equivalent
plastic strain to failure definition of the Johnson-Cook failure criterion. The weakening in the elastic law
and in the Johnson-Cook-like constitutive relation implicitly introduces the Lode angle dependency in
the elastoplastic behaviour. The material model is calibrated for precipitation hardened Inconel 718
nickel-base superalloy. The combination of a Lode angle dependent failure criterion with weakened con-
stitutive equations is proven to predict fracture patterns of the mechanical tests performed and provide
reliable results. Additionally, the mesh size dependency on the prediction of the fracture patterns was
studied, showing that was crucial to predict such patterns.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The material models that are typically used for the ductile met-
als may be classified according to their formulation as uncoupled
and coupled. In the former the failure criterion does not affect to
the constitutive relationships, whereas in the latter the accumu-
lated damage weakens somehow the elastic moduli, the constitu-
tive relationships or both. Several uncoupled material models
with third deviatoric invariant dependent yield function and fail-
ure criterion can be found in the literature such as the published
by Wilkins et al. (1980), Bai and Wierzbicki (2008) or Bai and
Wierzbicki (2010). Nevertheless, such models are not the only ones
that account for the third invariant dependency. Other uncoupled
models with independent failure criteria also can be found. In a re-
cent investigation, Kane et al. (2011) used a Johnson-Cook-like
constitutive relationship combined with two uncoupled failure cri-
teria: Cockcroft-Latham (Cockcroft and Latham, 1968) criterion
and a Continuum Damage Mechanics (CDM) based criterion
(Lemaitre, 1996). They show the effect that the Lode parameter
has in the fracture strain. Conversely, the coupled models prefer
to employ classical metal yield functions such and von Mises yield
function and insert the third invariant in the plasticity through
elastoplastic-damage coupled constitutive relationships. That is
the case of the models proposed Wierzbicki and Xue (Xue, 2007;
Xue and Wierzbicki, 2008) or Nahshon and Hutchinson (2008).

* Corresponding author.
E-mail address: borja@lms.polytechnique.fr (B. Erice).

0020-7683/$ - see front matter © 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.ijsolstr.2013.09.015

The conclusion achieved by all the authors using all those material
models is almost equivalent. The third deviatoric invariant should
be introduced in the model if complex fracture patterns are to be
captured.

In the recently postulated JCX model by Chocron et al. (2011),
the introduction of the third deviatoric invariant in the uncoupled
Johnson-Cook model was investigated. In accordance with the pre-
viously stated, one of the conclusions that such research arose was
that it was not possible to obtain complex fracture patterns unless
the third invariant was somehow included in the plasticity model.
In the JCX material model the third invariant was added by using a
Lode angle dependent function. This formulation implied a non-
convex yield surface. Although it was demonstrated that it was a
perfectly valid formulation, non-convex yield surfaces are
unorthodox in metal plasticity. With the same background, a
new formulation using a von Mises yield surface and a coupled
elastoplastic-damage constitutive model is now proposed.

Since the model is intended for high strain rate phenomena and
ballistic applications, the Johnson-Cook model (Johnson and Cook,
1985, 1983) is taken as a basis. The objective is to use a Lode angle
dependent function only in the definition of the equivalent plastic
strain to failure. The coupled elastoplastic-damage constitutive
model, similar to the damage coupled Johnson-Cook model pre-
sented by Barvik et al. (2001), carries out the rest. The influence of
third deviatoric invariant is then implicitly included with the help
of the coupled relationship. The concept of including the third devi-
atoric invariant in such a way to obtain complex fracture patterns
like slanted cracks, was ascertained by Xue and Wierzbicki (2009).
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An extensive experimental campaign was carried out in order to
calibrate the postulated model for the precipitation hardened Inco-
nel 718 nickel-base superalloy. The mechanical tests were per-
formed by employing different geometries and testing
techniques. Therefore, they were divided in the three following
groups:

e Quasi-static tensile tests of axisymmetric smooth and notched
specimens at room temperature.

o Quasi-static tensile tests of plane specimens.

e Dynamic tests of smooth axisymmetric specimens at various
temperatures.

Numerical simulations of all the tests using the explicit version
of LS-DYNA non-linear finite element code were carried out in or-
der to check the validity of the model. The capability of the pro-
posed material model in terms of reproducing fracture patterns
was also studied. The effect of the mesh size on such patterns
was found as crucial.

2. The model
2.1. Stress invariant representation

Any yield surface can be described by using the & stress tensor
invariants I, I and Is (Souza et al., 2008). This representation is ex-
tremely useful, given that in most of the cases it is associated to a
geometric interpretation in the principal stress space. A scalar yield
function ¢(l4,I5,I5) represents a surface in the principal stress
space (01,03,03). Nevertheless, a combination of another three
invariants (oy,J,,0) is more common. Thus, the yield function
can also be a function of them as:

¢ =d(h, I, I5) = ¢p(on,],0) (1)

where gy = 1/31; = 1/3tr(o) is the hydrostatic stress, J, is the sec-
ond deviatoric stress invariant and 0 is the Lode angle. The first
invariant is related with the stress tensor, whereas the other two
are related with the deviatoric stress tensor.

In metals, this dependency is usually neglected (Hill, 1950).
Therefore, for metal plasticity the yield function can be written
as ¢(J,,0). As an example, two of the most extensively used yield
functions are depicted in Fig. 1, von Mises and Tresca yield crite-
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Fig. 1. von Mises and Tresca yield criteria. Geometric interpretation of the three
invariants (oy,J,,0) in the principal stress space.

rion. The former is only J, dependent, whereas the latter is J,, 0
dependent.

The second and third deviatoric stress invariants J, and J;,
respectively are:

J, =-hL(e") = %tr(a’z) = %a’ 0 )

Js = s(0") = det(") = gtr(o")’ 3)

Typically, the third invariant is not used per se in the formula-
tion of the yield function. Another invariant is used in exchange,
the Lode angle. The main reason is that this last invariant has a
clear geometric interpretation in the principal stress space. The
Lode angle 0 is:

o1 g (3VB5) 1 (27,
G_fgsm (213/2 _—§sm (ﬁ) (4)
The Lode angle takes values from -7m/6<60<7m/6

(=30° < 0 < 30°), with the angle being between ¢’ and nearest
pure shear line (see Fig. 1). According to the definition, 6 = —30°
represents an axisymmetric tensile stress state, while 0 = 30° rep-
resents an axisymmetric compression stress state. Between them,
0 = 0° is for a pure shear stress state.

Since the Lode angle represents the different stress states can
be also used to define the strain to failure. Most ductile fracture
criteria are based on nucleation, growth and coalescence of
voids. The void growth inside the material is considered to be
stress triaxiality-driven. Hence, the strain to failure can also be
expressed as a function of the stress triaxility o* = oy/6 and
the Lode angle.

2.2. Constitutive model

The model was designated as Johnson-Cook-Xue-damage
(JCXd) to distinguish it from the uncoupled version JCX postulated
by Chocron et al. (2011). The details of the numerical implementa-
tion can be found in Erice (2012).

Assuming the additive decomposition of the strain tensor as:

e=¢&+8 (5)
the coupled elastic-damaged law reads:

c=w([D)C:& =w(D)C: (¢—¢&) (6)
where w(D) is the weakening function defined as:

w(D)=1-D" (7)

where D is the damage parameter and f is a material constant. C is
the fourth-order isotropic tensor of elastic moduli given by:

v E
drvya-m ?Htay! @
where E is the elastic modulus, v is the Poisson’s ratio, G is the shear
modulus and K is the bulk modulus.

A classical metal plasticity yield function was adopted to model
the plastic flow, i.e. the von Mises yield function. For the JCXd
material model the yield function is:

C= (1(—23—G)I®I+ZGI:

$(6,Y) = ¢(,,%,.T.D) = 0(6) — Y™(&,,5,,T,D) 9)

where is @ = /3], the equivalent stress and Y'*? is the JCXd flow
stress defined as:

Y% (g, &, T,D) = W(D)Yw(p, &, T) (10)
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