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a b s t r a c t

All structures exhibit some form of damping, but despite a large literature on the damping, it still remains
one of the least well-understood aspects of general vibration analysis. The synthesis of damping in struc-
tural systems and machines is extremely important if a model is to be used in predicting vibration levels,
transient responses, transmissibility, decay times or other characteristics in design and analysis that are
dominated by energy dissipation. In this paper, new structural damping identification method using nor-
mal frequency response functions (NFRFs) which are obtained experimentally is proposed and tested
with the objective that the damped finite element model is able to predict the measured FRFs accurately.
The proposed structural damping identification is a direct method. In the proposed method, normal FRFs
are estimated from the complex FRFs, which are obtained experimentally of the structure. The estimated
normal FRFs are subsequently used for identification of general structural damping. The effectiveness of
the proposed structural damping identification method is demonstrated by two numerical simulated
examples and one real experimental data. Firstly, a study is performed using a lumped mass system.
The lumped mass system study is followed by case involving numerical simulation of fixed–fixed beam.
The effect of coordinate incompleteness and robustness of method under presence of noise is investi-
gated. The performance of the proposed structural damping identification method is investigated for
cases of light, medium, heavily and non-proportional damped structures. The numerical studies are fol-
lowed by a case involving actual measured data for the case of a cantilever beam structure. The results
have shown that the proposed damping identification method can be used to derive an accurate general
structural damping model of the system. This is illustrated by matching the damped identified FRFs with
the experimentally obtained FRFs.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The modeling of damping is a very complex and still considered
somewhat an unknown or grey area. The effects of damping are
clear, but the characterization of damping is a puzzle waiting to
be solved. A major reason for this is that, in contrast with inertia
and stiffness forces, it is not clear which state variables are relevant
to determine the damping forces. A commonly used model origi-
nated by Lord Rayleigh (1897) assumes that instantaneous gener-
alized velocities are the only variables. The Taylor expansion
then leads to a model, which encapsulates damping behavior in a
dissipation matrix, directly analogous to the mass and stiffness
matrices. However, it is important to avoid the misconception that,
this is the only model of vibration damping. It is possible for the
damping forces to depend upon values of other quantities. Any
model, which guarantees that the energy dissipation rate is non-
negative, can be a potential candidate to represent the damping
of a given structure. The appropriate choice of damping model

depends of course on the detailed mechanisms of damping. Unfor-
tunately these mechanisms are more varied and less well-under-
stood than the physical mechanisms governing the stiffness and
inertia. In broad terms, damping mechanisms can be divided into
three classes:

1. Energy dissipated throughout the bulk material making up the
structure which is also called as material damping.

2. Dissipation of energy associated with junctions or interfaces
between parts of the structure, generally called as boundary
damping.

3. Dissipation of energy associated with a fluid in contact with the
structure which is also called as viscous damping.

Material damping can arise from variety of micro structural
mechanisms (Bert, 1973) but for small strains it is often adequate
to represent it through an equivalent linear, visco-elastic contin-
uum model of the material. Damping can then be taken into ac-
count via the viscoelastic correspondence principle, which leads
to the concept of complex moduli. Boundary damping is less easy
to model than material or viscous damping but it is of crucial

0020-7683/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.ijsolstr.2013.09.017

⇑ Tel.: +45 6550 7372; fax: +45 6550 7384.
E-mail address: viar@iti.sdu.dk

International Journal of Solids and Structures 51 (2014) 133–143

Contents lists available at ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier .com/locate / i jsols t r

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2013.09.017&domain=pdf
http://dx.doi.org/10.1016/j.ijsolstr.2013.09.017
mailto:viar@iti.sdu.dk
http://dx.doi.org/10.1016/j.ijsolstr.2013.09.017
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr


importance in most of engineering structures. When damping is
measured on a built structure, it is commonly found out to be at
least an order of magnitude higher than the intrinsic material
damping of the main components of the structure. This difference
is attributed to effects such as frictional micro-slipping at joints
and the air pumping in riveted seams. In such a system the energy
loss mechanism would no doubt be significantly non-linear if
examined in detail. But it can be considered linear provided it is
small. This issue is discussed in detail by Heckl (1962) assuming
small damping. He found that linear theory produce acceptable re-
sponse predictions for panels whose damping mechanism arose
from a bolted joint on beam. Oliveto and Greco (2002) conducted
a study on how the modal damping ratios change with different
boundary conditions and found that Rayleigh-type damping is
actually independent of the boundary conditions and modal damp-
ing ratios can be easily converted from one boundary condition to
another. When a structure exhibits a damped dynamic behavior
that does not conform to the classical and well known viscous or
hysteric damping models, such problems are addressed by means
of fractional derivatives leading to a model in terms of general
damping parameters. Maia et al. (1998) discussed the use of frac-
tional damping concept for the modeling the dynamic behavior
of the linear systems and showed how this concept allows for
clearer interpretation and explanation of the behavior displayed
by common viscous and hysteric damping models. Agrawal and
Yuan (2002) modeled the damping forces proportional to the frac-
tional derivative of displacements and the fractional differential
equations governing the dynamics of a system. Adhikari and
Woodhouse (2003) developed four indices to quantify non-viscous
damping in discrete linear system. Two of these indices are based
on non-viscous damping while third one is based on the residue
matrices of the system transfer function and the fourth is based
on measured complex modes of the system. Damping identifica-
tion has important applications in many engineering fields such
as modal analysis, condition monitoring and structural dynamic
modifications. Chen et al. (1996) presented a method for getting
the spatial model from complex frequency response function.
Unfortunately, it is unrealistic to assume that all pertinent infor-
mation is given to solve for damping matrix. Actually, data from
testing is neither complete nor error free. Minas and Inman
(1991) proposed a method which assumes that analytical mass
and stiffness matrices are determined a priori from a finite element
model. Eigenvalues and eigenvectors are obtained experimentally,
and are allowed to be incomplete, as would be expected from mod-
al testing. The mass and stiffness matrices are reduced to the size
of the modal data available. The identified damping matrix is as-
sumed to be real, symmetric and positive definite. The structure
must exhibit complex modes for this procedure and the solution
is limited to real symmetric positive definite damping matrices.
Beliveau (1976) uses natural frequencies, damping ratios, mode
shapes and phase angles to identify parameters of viscous damping
matrix. The identification is performed iteratively. The mass and
stiffness matrices are reduced to the size of the modal data avail-
able. This method involves solving an nth order system of linear
equations for each eigenvector, making it fairly inefficient. Lancas-
ter (1961) proposed a method of identifying the mass, stiffness and
damping matrices of a system directly given only the eigenvalues
and eigenvectors. The input data must be normalized in a very spe-
cific way for the method to work. The mass and damping matrices
to be used to normalize the eigenvectors, which are subsequently
used to calculate the damping matrix. This method is only for cal-
culating the viscous damping and Lancaster concludes by stating
‘‘the theory is there, should the experimental techniques ever be-
come available. It is still not possible to measure the normalized
eigenvectors’’. The shortfall of this method comes in normalizing
the eigenvectors, which requires knowledge of the very same

damping matrix which we wish to, find in the end. Pilkey (1998)
proposed two methods for computing the viscous damping matrix
using complex modal data. The first method is an iterative method
which requires prior knowledge of the mass matrix and eigen-
values and eigenvectors. The second method requires more infor-
mation but less computationally intensive. This method requires
prior knowledge of the mass and stiffness matrices and eigendata.
Both the methods developed from the Lancaster (1961) concept.
Friswell et al. (1998a) proposed a direct method of viscous damp-
ing identification using complex modal data. Oho et al. (1990) pro-
posed a method of identifying experimental set of spatial matrices
valid only for the hysterical damping for the entire frequency range
of interest using FRFs. Using this method, it is possible to set the
number of degrees of freedom much larger than the number of res-
onant frequencies located inside the frequency range of interest
and spatial matrices identified are able to represent the dynamic
characteristics of the structure under arbitrary boundary condi-
tions even though the conditions differ from those in place at the
time of the identification. The limitation of this method is that it
is unable to predict correctly in the modal domain. Lee and Kim
(2001) proposed an algorithm for the identification of the damping
matrices which identifies the viscous and structural damping
matrices of the equation of motion of a dynamic system using fre-
quency response matrix. The accuracy of the identified damping
matrices depends almost entirely on the accuracy of the measured
FRFs, especially their phase angles. Adhikari and Woodhouse
(2000a) identified the damping of the system as viscous damping.
Most of the above damping identification methods are based on
viscous damping model and require the complex modal data,
which is obtained using modal analysis of complex FRF. Adhikari
and Woodhouse (2000b) identified non-viscous damping model
using an exponentially decaying relaxation function. Phani and
Woodhouse (2007) proposed that complex modes arising out of
non-proportional dissipative matrix hold the key to successful
modeling and identification of correct physical damping mecha-
nisms in the vibrating systems but these identified complex modes
are very sensitive to experimental errors and errors arising out
from curve fitting algorithms. Some research efforts have also been
made to update the damping matrices. Lin and Ewins (1994) pro-
posed a response function method (RFM) to update mass and stiff-
ness matrices using real part of FRF. Imregun et al. (1995) extended
the response function method (RFM) to update proportional vis-
cous and structural damping matrices by updating the coefficients
of viscous and structural damping matrices. In this paper, it is re-
ferred as ‘extended RFM’. Arora et al. (2009a) identified the struc-
tural damping matrix using complex frequency response functions
(FRFs) of the structure. In this method, the updating parameters are
assumed complex and the imaginary part of the complex updating
parameter represents structural damping in the system. Arora et al.
(2009b) proposed a viscous damping identification method in
which viscous damping is identified explicitly. This procedure is
a two steps procedure. In the first step, mass and stiffness matrices
are updated and in the second step, viscous damping is identified
using updated mass and stiffness matrices obtained in the previous
step. Pradhan and Modak (2012) proposed FRF-based model
updating method in which normal FRFs (NFRFs) is used for updat-
ing damping matrices along with mass and stiffness matrices.

In this paper, a new method of structural damping identifica-
tion is proposed. The proposed method is direct method and re-
quires estimation of full normal FRF matrix. The full normal
FRFs are estimated from the full experimental complex FRF ma-
trix. This method is applicable to simpler structures, where it is
practical to get full FRF matrix. The proposed method also does
not require initial damping estimates. The identified structural
damping matrix [D] is both general symmetric and positive
definite. The effectiveness of the proposed structure damping
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