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a b s t r a c t

In this study, we investigate the effect of geometrical imperfections on swelling-induced buckling pat-
terns in gel films with a square lattice of holes. Finite element analysis is performed using the inhomo-
geneous field theory of polymeric gels in equilibrium proposed by Hong et al. (2009). Periodic units
consisting of 2 � 2 and 10 � 10 unit cells are analyzed under a generalized plane strain assumption. Geo-
metrical imperfections are introduced using randomly oriented elliptical holes. The 2 � 2 unit cells show
that the resulting buckling patterns are sensitive to imperfections; three different buckling patterns are
obtained, and the most dominant one is the diamond plate pattern observed in experiments, which can-
not be described using the model without imperfections. The 10 � 10 unit cells reveal that random
imperfections are responsible for inducing homogeneous transformation into the diamond plate pattern.
Furthermore, domain wall formation is simulated using a 10 � 10 unit cell model containing two elliptic
holes.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Swelling-induced instability creates a variety of complex and
periodic wrinkle patterns in thin polymeric films (e.g., Tanaka
et al., 1987; Guvendiren et al., 2009; Cai et al., 2011), and also
causes more complicated pattern transformation in thin polymeric
films with periodic arrangements of holes (Zhang et al., 2008; Sing-
amaneni et al., 2009; Zhu et al., 2012). This instability and the
resulting pattern transformation are spontaneously induced by
in-plane compressive stress caused by solvent swelling of thin
polymeric films constrained on a substrate. The resulting compli-
cated periodic patterns have wavelengths in the order of 0.1–
10 lm, and can form over large regions depending on the size of
a film. This property has allowed researchers to create complex
patterns on nano- and microscales, switch photonic and phononic
properties, tune surface adhesion and wetting, and develop nano-
printing methods (Zhang et al., 2008; Jang et al., 2009; Yang
et al., 2010; Zhu et al., 2012).

When thin polymeric films containing circular holes in a square
array are exposed to a solvent, a diamond plate pattern is typically
observed (Zhang et al., 2008; Singamaneni et al., 2009; Zhu et al.,
2012). The square array of circular holes buckles and transforms

into the diamond plate pattern, in which circular holes are de-
formed into elliptical slits, and neighboring slits are arranged
mutually perpendicular to each other. Experiments using
poly(dimethylsiloxane) (PDMS) films (Zhang et al., 2008) revealed
that this pattern transformation can occur under a wide range of
conditions, including hole diameter d = 0.35–2 lm, pitch l = 0.8–
5 lm, and depth h = 4–9 lm. The slits formed in the case of
d = 1 lm, l = 2 lm and h = 9 lm are 78 nm wide and 2.3 lm long.
It should be noted that although these characteristic dimensions
are very small, pattern transformation occurs homogeneously over
the entire sample with an area of up to 1 cm2 with no random
defects.

This homogeneous transformation may be interpreted as a re-
sult of microscopic bifurcation of perfectly periodic microstruc-
tures (Geymonat et al., 1993; Ohno et al., 2002; Bertoldi et al.,
2008). However, scanning electron microscope (SEM) images
show that the initial configurations of individual holes are not
perfect circles and include obvious irregular imperfections
(Zhang et al., 2008). This implies that geometrical imperfections
do not strongly affect microscopic bifurcation and the resulting
pattern transformation. On the contrary, this observation sug-
gests the possibility that geometrical imperfections play an
important role in causing the homogeneous transformation. It
is therefore interesting and worthwhile to investigate the effect
of geometrical imperfections, and to elucidate the mechanism
underlying the homogeneous transformation into the diamond
plate pattern.
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Zhang et al. (2008) and Matsumoto and Kamien (2009) used the
linear elasticity theory to demonstrate that the diamond plate pat-
tern minimizes the strain energy. They assumed that each hole col-
lapses to a slit with an arbitrary orientation, and used the theory of
cracks to model the slits as a double climb pileup of edge disloca-
tions; i.e., a dislocation dipole (Hirth and Lothe, 1982). They calcu-
lated the set of individual orientations of slits that minimizes the
strain energy, correctly predicting the orientational order in the
diamond plate pattern. However, as stated by Matsumoto and
Kamien (2009), their method did not intend to capture the entire
deformation process of the collapse of the holes. The presence of
imperfections could not be considered in their analysis, so their
method cannot access the effect of geometrical imperfections on
the homogeneous transformation of gel films.

Hong et al. (2009) developed an inhomogeneous field theory of
polymeric gels in equilibrium, and performed a finite element anal-
ysis of the diamond plate pattern to demonstrate the wide applica-
bility of their theory. In their theory, the free energy function of
Flory and Rehner (1943) was applied to polymeric gels, and was
implemented into the finite element package Abaqus using a
user-defined subroutine UHYPER. Hong et al. (2009) successfully
reproduced the diamond plate pattern using a particular unit cell
containing quarters of four neighboring holes. The initial and de-
formed configurations of the unit cell were depicted in their paper.
The present authors however found by measuring the initial
dimensions in the figure that they introduced an imperfection into
one of holes. The imperfect hole is elliptical, with its major diame-
ter in the horizontal direction, and promotes the transformation
into the diamond plate pattern. Ding et al. (2013) might have used
the same unit cell to reproduce the diamond plate pattern, but
imperfections were not mentioned in their paper. Therefore, more
general analyses including random imperfections, as well as using
larger periodic units have not been performed yet.

In the present study, the effect of geometrical imperfections on
the swelling-induced buckling patterns in thin gel films with holes
in a square array is investigated. Finite element analysis is per-
formed using the inhomogeneous field theory developed by Hong
et al. (2009), which is briefly described in Section 2. Section 3 is de-
voted to numerical modeling. Geometrical imperfections are intro-
duced as randomly oriented elliptical holes. Periodic units
consisting of 2 � 2 and 10 � 10 unit cells are analyzed under a gen-
eralized plane strain assumption. A measure of deviation from
roundness is defined to quantify the progress of pattern formation.
Section 4 presents and interprets numerical results. The buckling
patterns predicted using 2 � 2 and 10 � 10 unit cells are shown,
and the mechanism of homogeneous transformation into the dia-
mond plate pattern and the role of geometrical imperfections are
discussed. In addition, in Section 5, the domain wall formation ob-
served by Zhang et al. (2008) is taken up for simulation using a
10 � 10 unit cell model containing two elliptic holes as basic geo-
metrical imperfections. Finally, Section 6 summarizes the results of
this study.

2. Inhomogeneous field theory

This section briefly describes the inhomogeneous field theory of
polymeric gels in equilibrium, which was developed by Hong et al.
(2009). This theory considers that a polymer network is in contact
with a solvent and subjected to mechanical loads and geometric
constraints at a constant temperature. If the stress-free, dry net-
work is taken as the reference state, the deformation gradient of
the network is defined as Fij = dxi(X)/dXj, where Xj and xi(X) are
the network coordinates of a gel system in reference and deformed
states, respectively. When C(X) is defined as the concentration of
solvent molecules at a point in the gel system, the gel is in an equi-

librium state characterized by the two fields xi(X) and C(X). The
free energy density of the gel, W, is assumed to be a function of
the deformation gradient, F, and the concentration of solvent in
the gel, C; i.e., W(F,C). The inhomogeneous field theory may be ap-
plied to various free energy functions for swelling elastomers, but
in this study, the specific free energy function of Flory and Rehner
(1943) is used. This is because this form is well known to provide a
basic for the interpretation of the swelling behavior of polymeric
gels (Treloar, 1975).

The free energy function of Flory and Rehner (1943) for a poly-
meric gel consists of two terms associated with stretching and
mixing of the free energies, and is written as

W ¼ 1
2

NkTðI � 3� 2 log JÞ � kT
t

tC log 1þ 1
tC

� �
þ v

1þ tC

� �
; ð1Þ

where I ¼ FijFij and J ¼ det F are invariants of the deformation gra-
dient, N is the number of polymeric chains per reference volume,
kT is the absolute temperature in the unit of energy, t is the volume
per solvent molecule, and v is a dimensionless parameter that char-
acterizes the enthalpy of mixing. As stated above, Eq. (1) takes an
explicit form as a function of the deformation gradient, F, and the
solvent concentration, C.

Considering dxi and dC to be arbitrary variations of xi and C,
respectively, from a state of equilibrium, the virtual work principle
gives an equilibrium equation in which the change of the free en-
ergy of the gel equals the sum of the work caused by external
mechanical force and external solvent. That is,Z

V
dWdV ¼

Z
V

BidxidV þ
Z

A
TidxidAþ l

Z
V

dCdV ; ð2Þ

where V is the reference volume, and A is the reference surface. The
first and second terms on the right hand side are the mechanical
work done by body forces and surface forces, respectively, and the
third term represents the work done by the external solvent. Here,
l is the chemical potential of the external solvent, and is equivalent
to that in the gel; that is,

l ¼ @W
@C

: ð3Þ

A Legendre transformation allows the free energy function W(F,C)
to be transformed into another form (Hong et al., 2009),

Ŵ ¼W � lC; ð4Þ

which is defined as a function of F and l; i.e., ŴðF;lÞ. Combination
of Eqs. (2) and (4) leads toZ

V
dŴdV ¼

Z
V

BidxidV þ
Z

A
TidxidA: ð5Þ

When the gel is in a state of equilibrium, the chemical potential of
the solvent molecules in the gel is homogeneous and equals the
chemical potential of the external solvent, l. Consequently, l is re-
garded as a state variable, and the equilibrium condition (5) takes
the same form as that for a hyperelastic solid.

Assuming that the network of polymers and pure liquid solvent
are incompressible, the volume of the gel can be expressed as the
sum of the volume of the dry network and that of the swelling sol-
vent. This assumption leads to (Hong et al., 2009)

1þ tC ¼ J: ð6Þ

Using Eqs. (1), (4), and (6), the Flory–Rehner free energy function
can be rewritten as

Ŵ ¼ 1
2

NkTðI � 3� 2 log JÞ � kT
t
ðJ � 1Þ log

J
J � 1

þ v
J

� �
� l

t
ðJ � 1Þ:

ð7Þ
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