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a b s t r a c t

This paper presents the fundamental contact solutions of a magneto-electro-elastic half-space indented
by a smooth and rigid half-infinite punch. The material is assumed to be transversely isotropic with the
symmetric axis perpendicular to the surface of the half-space. Based on the general solutions, the gener-
alized method of potential theory is adopted to solve the boundary value problems. The involved poten-
tials are properly assumed and the corresponding boundary integral equations are solved by using the
results in literature. Complete and exact fundamental solutions are derived case by case, in terms of ele-
mentary functions for the first time. The obtained solutions are of significance to boundary element anal-
ysis, and an important role in determining the physical properties of materials by indentation technique
can be expected to play.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The fundamental solutions or Green’s functions play an impor-
tant role in theoretical and applied studies on the physics of solids.
They can be used to solve the boundary value problems frequently
encountered in the science and technology (Stakgold, 1998; Duffy,
2001), and to construct three dimensional (3D) analyses by the
boundary element methods for crack, contact, defect and inclusion
problems.

In the framework of elasticity, there have been some classical
fundamental solutions, for instance, the Kelvin solution for an infi-
nite isotropic body subjected to a concentrated force, and Mindlin
solution for a half-infinite isotropic space. In recent several dec-
ades, a great deal of effort has been made to pursue the Green’s
functions for the half-infinite/infinite bodies with anisotropy and/
or multi-phase coupled property (Pan and Chou, 1976, 1979a,b;
Benvensite, 1992; Ding et al., 1997a,b; Pan and Han, 2004; Yang
and Pan, 2004; to name a few). In particular, Ding and Jiang
(2003) and Hou et al. (2005) developed the fundamental solutions
for the magneto-electro-elastic (MEE) half-space with transverse
isotropy, in terms of the elementary functions by the trial-and-er-
ror method. These solutions are adopted by Hou et al. (2003) and
Chen et al. (2010) to study the elliptical Hertzian contact problem
and to develop the general theory of indentation for the flat ended,
conical and spherical punches, respectively.

The corresponding 3D exact solutions of contact problems are
useful to indentation techniques, which have been widely used
to characterize the physical properties of advanced materials. This
has been illustrated by the pioneer works (Sneddon, 1965;
Gladwell, 1980; Jonson, 1985) for isotropic elastic bodies. It was
further proven by Kalinin et al. (2004, 2007) that the exact 3D con-
tact solutions are helpful to interpreting quantitatively the re-
sponse of the various scanning probe microscopies (also see Chen
et al., 2010) for magneto-electro-elastic composites. In this sense,
the corresponding 3D solutions within the framework of mag-
neto-electro-elasticity are of significance, since the magneto-elec-
tro-elastic (or multiferroic) materials composites have potential
applications in the intelligent systems in various engineerings,
due to the strong coupling effect between the mechanical, electric
and magnetic phases (Dong et al., 2004a,b; Zheng et al., 2004;
Eerenstein et al., 2006; Ramesh and Spaldin, 2007; Zhai et al.,
2007). To this end, Chen et al. (2010) developed the general theory
of indentation over a multiferroic composite half-space by three
common indenters (flat-ended, conical, and spherical punches).
The half-infinite indenter, to which the corresponding problem is
non-axisymmetric, has not been addressed in Chen et al. (2010).

The half-space punched by a semi-infinite indenter has been
studied to some extent. Rubio-Gonzalez (2001) made a two-
dimensional elasto-dynamic analysis for orthotropic materials
using the Laplace and Fourier transforms conjugated with the Wie-
ner–Hopf technique. Based on the elastostatic general solution,
Fabrikant and Karapetian (1994) presented the elementary exact
solutions to the corresponding mixed boundary-value problem
by the potential theory method. The same method was then
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extended by Huang et al. (2007) to the contact problem in electro-
elasticity. Huang et al. (2007) pointed out that the solutions for the
half-infinite indenter can work as an excellent approximation to
the physical variables in the half space punched by a large indenter
with lengthly straight edge, which is widely employed in micro-
electro-mechanical system (Waldner, 2008). In fact, this is numer-
ically evidenced by Rubio-Gonzalez (2001). However, there is no
report yet on indentation over an MEE half-space induced by the
half-infinite punch, to the best of authors’ knowledge.

The purpose of this paper is to seek 3D fundamental solutions for
the contact problem of a half-space punched by a smooth and rigid
half-infinite indenter, in the framework of magneto-electro-elastic-
ity. The material is assumed to be transversely isotropic and the in-
denter may be electrically and magnetically conducting, electrically
conducting and magnetically insulating, electrically insulating and
magnetically conducting, or both electrically and magnetically insu-
lating. The corresponding boundary value problems are solved by
means of the general solutions in conjunction with the method of po-
tential theory, which is generalized to the contact problem within
magneto-electro-elasticity for the first time. The boundary integral
equations for various boundaries, which have the same mathemati-
cal structures, are solved by referring to the results available in the
literature. The Green’s functions of the potentials are exactly derived
and the complete fundamental solutions in closed form are explicitly
expressed in terms of elementary functions. The singularities of the
generalized stresses are examined and the corresponding intensity
factors are presented. The analytical solutions in this study can not
only serve as benchmarks to simplified analyses and numerical
methods, but also play an important role in characterizing the phys-
ical properties of multiferroic composites.

2. Basic equations and general solutions

In the Cartesian coordinate system (x; y; z) with the z-axis nor-
mal to the isotropic plane, the constitutive relations of transversely
isotropic MEE materials read (Ding et al., 1997a; Chen et al., 2010)
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where riðsijÞ; Di and Bi are stress, electric displacement and mag-
netic induction components, respectively; uðv;wÞ; U and W are
the elastic displacements, electric potential and magnetic potential,
respectively, which are referred to as generalized displacements;
cij; eij; dij; eij; gij and lij are respectively the elastic, piezoelectric,
piezo-magnetic, dielectric, electromagnetic and magnetic constants.
Furthermore, we have an additional relation 2c66 ¼ c11 � c12 for
media with transverse isotropy. It is evident that various decoupled
cases can be degenerated from (1) by letting the corresponding cou-
pling constants vanish.

Without the effect of body forces, electric and ‘‘magnetic’’
charges, the generalized equilibrium equations are
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Substituting (1) into (2), we can derive the equilibrium equations in
terms of generalized displacements, for which the general solutions
were proposed by Ding and Jiang (2003) and Hou et al. (2005) by
means of the rigorous operator theory and the generalized Almansi
theorem. The form of the general solutions depends on the follow-
ing algebraic equation

n0s8 � n1s6 þ n2s4 � n3s2 þ n4 ¼ 0; ð3Þ

where the coefficients ni (i ¼ 0;1; . . . ;4) are given in Ding and Jiang
(2003) and Hou et al. (2005), and are listed in Appendix. From a
mathematical point of view, (3) is the characteristic equation of
an elliptical partial differential equation of the 8th order, which is
satisfied by a potential function. In that partial differential equation,
derivatives of odd orders with respect to the variable z do not ap-
pear (Ding and Jiang, 2003; Hou et al., 2005). For the piezoelectric,
piezo-magnetic and elastic materials as special cases, the corre-
sponding eigen-equation can be reduced from (3) as shown in Chen
et al. (2010). In the present study, the eigenvalues si in (3) have a
real part, whose correlation determines the form of the general
solutions in terms of quasi-harmonic functions. In what follows,
our concern is confined only to transversely isotropic media with
distinct eigenvalues. In this case, the general solutions are of the
simplest form.

Introducing the following complex variables with i ¼
ffiffiffiffiffiffiffi
�1
p
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sz2 ¼ Dx þ iDy; sz3 ¼ Bx þ iBy; rz2 ¼ Dz; rz3 ¼ Bz;
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Ding and Jiang (2003) obtained the following general solutions in
compact form
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