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a b s t r a c t

In this work, the question of homogenizing linear elastic, heterogeneous materials with periodic micro-
structures in the case of non-separated scales is addressed. A framework if proposed, where the notion of
mesoscopic strain and stress fields are defined by appropriate integral operators which act as low-pass
filters on the fine scale fluctuations. The present theory extends the classical linear homogenization by
substituting averaging operators by integral operators, and localization tensors by nonlocal operators
involving appropriate Green functions. As a result, the obtained constitutive relationship at the mesoscale
appears to be nonlocal. Compared to nonlocal elastic models introduced from a phenomenological point
of view, the nonlocal behavior has been fully derived from the study of the microstructure. A discrete ver-
sion of the theory is presented, where the mesoscopic strain field is approximated as a linear combination
of basis functions. It allows computing the mesoscopic nonlocal operator by means of a finite number of
transformation tensors, which can be computed numerically on the unit cell.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Classical homogenization theory assumes separation between
scales, i.e., that the overall strain and stress fields have a character-
istic wavelength which is much larger than that of the microscopic
fluctuations fields. When this assumption is not met, e.g., when the
wavelength associated with the applied load is comparable with
that of strain and stress fluctuations, the material behavior at a
point is influenced by the deformation of neighboring points and
the assumption of scale separation is no more valid. In that case,
homogenized models able to capture the effects of a non-uniform
overall strain are required. In addition, the notion of mesoscopic
models has recently emerged in the literature. By mesoscopic mod-
els, we refer to a description of the behavior halfway between a
fully (microscopic) detailed one and a fully homogenized (macro-
scopic) one using a constant effective tensor. In that sense, meso-
scopic models correspond to equivalent behaviors when scales
are not separated.

Two main classes of approaches have been proposed in the last
decades to model homogenized media when scales are not
separated.

The first class of methods uses generalized continuum mechan-
ics by including gradient of strain or higher derivatives of the
strain. Generalized continuum mechanics theories have been

proposed since the works of Toupin (1962), Mindlin (1964) and
Mindlin and Eshel (1968). These approaches are phenomenological
and do not derive from a micromechanical analysis. Furthermore,
they require identifying a large number of coefficients associated
with higher-order tensors.

In Kouznetsova et al. (2002), Kouznetsova et al. used an exten-
sion of the classical computational homogenization techniques to a
full geometrically non-linear gradient approach. Macroscopic
equations are derived based on the work of Toupin (1962) and
Koiter (1964) for the couple-stress continuum and generalized by
Mindlin and Eshel (1968), see also Fleck and Hutchinson (1997)
for a full gradient variational principle. In Ostoja-Starzewski et al.
(1999), Ostoja-Starzewski et al. and Bouyge et al. (2001) have used
the unit cell model with a different type of boundary conditions to
calculate the overall moduli and characteristic length of a homog-
enized couple-stress model composed of classically linearly elastic
constituents. de Felice and Rizzi (2001) and Yuan and Tomita
(2008) have extended the classical homogenization scheme
(Suquet, 1985) based on the Hill-Mandel macro homogeneity con-
dition to the Cosserat medium. Other works (Bouyge et al., 2001;
Bouyge et al., 2002; Kouznetsova et al., 2002; Kouznetsova et al.,
2004; Yuan and Tomita, 2008) derive the constitutive equations
of generalized continuum models through higher-order boundary
conditions on the unit cell and use a generalization of the
Hill-Mandel condition. As mentioned in Yuan and Tomita (2008),
these approaches can lead to unphysical results in some situations
due to an over-evaluation of the macroscopic internal energy of the
medium. In addition, when the cell is homogeneous, the resulting
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macroscopic behavior remains in some cases a gradient elastic
model which is obviously unsatisfying.

In Forest and Sab (1998) Forest and Sab have proposed a frame-
work to derive an effective linear Cosserat continuum from a het-
erogeneous classical continuum microscopic model, and from a
linear Cosserat microscopic model in Forest et al. (1999). In Forest
et al. (2001), the asymptotic homogenization method,classically
used for periodic heterogeneous materials, has been applied to lin-
early elastic Cosserat microstructural constituents.

In the case of periodic microstructures, Gambin and Kroener
(1989), Boutin (1996), Triantafyllidis and Bardenhagen (1996),
and Smyshlyaev and Cherednichenko (2000) have studied the
influence of high-order terms of the series expansion on the
macroscopic behavior of linear elastic composites, initiated by
Bensoussan et al. (1978) and Sanchez-Palencia (1980). When the
expansion parameter associated with the length ratio is no more
small compared to one, then a rigorous framework can be estab-
lished to introduce the effects of strain and stress gradients on
the local response of heterogeneous composites.

Following Boutin (1996) and Smyshlyaev and Cherednichenko
(2000), Tran et al. (2012) proposed a more systematic framework
to define the coefficients of strain gradient elasticity in a series
expansion framework. At the microscopic scale the phases are lo-
cally elastic but as the separation of scales no more holds, the
material obeys strain gradient elasticity. The authors have shown
that depending on the truncation order, strain gradient theory of
Toupin (1962), Toupin (1964), Mindlin (1964), Mindlin and Eshel
(1968), or a general theory of Green and Rivlin (1964) can be
recovered.

A second class of theories uses nonlocal approaches to model
the equivalent homogenized medium. Diener et al. (1981), Diener
et al. (1982), Diener et al. (1984) and later Drugan and
Willis (1996) derived a nonlocal constitutive model from the
Hashin–Shtrikman variational principle. Other approaches provide
a nonlocal constitutive equation relating the mean stress and strain
fields (Beran and McCoy, 1970; Willis, 1983; Furmanski, 1997).
Luciano and Willis (2000) introduced nonlocal constitutive
behavior of an infinite laminated composite. The nonlocal elasticity
theory can be traced back to Kröner et al. (1972), Kröner (1967)
who formulated a continuum theory for classical materials with
long range cohesive forces. Eringen (1972), Eringen (1972), Eringen
(1976), Eringen and Edelen (1972) produced nonlocal elasticity
theories characterizing the presence of nonlocality residues of
fields (like body forces, mass, entropy, internal energy. . .). Eringen
and Kim (1974), Eringen et al. (1977) simplified the above men-
tioned theory for linear homogeneous isotropic nonlocal elastic
solids in such a way that the nonlocal theory differs from the clas-
sical one in the stress–strain constitutive relations only, with the
elastic modulus being a simple function of the Euclidean distance
between the strain and stress points. One serious issue is that this
theory cannot take into account the presence of cracks or voids in
the nonlocal model. In Eringen (1983) Eringen proposed a differen-
tial form to compute the nonlocal operator. However, this model is
empirical and does not derive from microstructural considerations.
In Gao (1999), an asymmetric theory of nonlocal elasticity is
provided, and it is shown that the higher gradient model can be de-
duced from the nonlocal theory. In Polizzotto (2001) a thermody-
namic and variational framework is proposed in the context of
the nonlocal elasticity theory of Eringen (1972), Eringen (1972),
Eringen (1976) and provided a nonlocal FEM based methodology
as well as a treatment for the presence of cracks in the nonlocal
model by replacing the Euclidean distance by a geodetical distance.
A special mention may be made of nonlocal macroscopic behavior
described by using wave-vectors dependent behavior in Fourier
domain for conduction (Furmanski, 1997), which clearly indicates
that separation of scale is no more achieved, but without a clear

methodology for describing the kernel appearing in the constitu-
tive behavior.

The framework proposed in this study belongs to the second
class of theories, i.e., nonlocal approaches. However, compared to
numerous previous works based on a phenomenological approach
of the macroscopic behavior, a systematic methodology is provided
to derive the nonlocal relations of the effective continuum includ-
ing naturally all the effects of microstructural constituents. The
present methodology then defines a consistent nonlocal homogeni-
zation procedure, without any empirical model. We first define
the mesoscopic fields by means of nonlocal smoothing (filters)
operators acting on the fine scale fluctuations of the microscopic
fields. Then, we introduce a splitting of the strain field into a mes-
oscopic (filtered) part and the remaining fluctuation. A localization
problem can be defined on a unit cell, as a function of the meso-
scopic strain field, which appears as a non-uniform eigenstrain.
Using an appropriate Green’s tensor, the nonlocal mesoscopic con-
stitutive relationship can be derived.

The paper content is as follows. In Section 2, the definitions of
mesoscopic fields and of the localization problem in the context
of non-separated scales are introduced. In Section 3, the homoge-
nized quantities are defined, and analogies with classical homoge-
nization are drawn. In Section 4, we show that the present theory
matches the classical homogenization when the scales are sepa-
rated, and that we recover classical (local) elastic media when
the material is homogeneous. In Section 5, a discrete theory is pro-
vided, to set the problems to be solved in the unit cell in a numer-
ical context. Guidelines for numerical computations are provided,
even though finite element implementation details are left to a
separated forthcoming study. Numerical examples are presented
in Section 6 for illustration.

2. Localization problem for consistent nonlocal
homogenization

2.1. Definition of mesoscopic fields through filters

We consider a domain X 2 R3, whose external boundary is de-
noted by @X. The material is supposed to be linearly elastic. We as-
sume that the domain X is associated with a unit cell of a periodic
microstructure characterized by its size whose order is k and there-
fore wave-number (or frequency) x ¼ 2p=k. We associate this size
to a scale that we call microscopic scale, denoted by S. Now let us
define another scale Ŝ related to a characteristic wavelength k̂ > k
and frequency x̂ ¼ 2p=k̂, where k̂ is not necessarily much larger
compared to k. This characteristic wavelength is representative of
an applied loading (external or body forces) on X. We denote by
êðxÞ and r̂ðxÞ the strain and stress fields related to the scale Ŝ,
called mesoscopic strain and stress fields. Similarly to the classical
homogenization scheme, this mesoscopic field will induce fluctua-
tions at the scale of the microstructure which will have a wave-
length k. The microscopic strain and stress, resulting in
superposition of the applied mesoscopic fields and of the local fluc-
tuations in X, are denoted by eðxÞ and rðxÞ, respectively.

In the present work, we consider that mesoscopic fields are re-
lated to microscopic ones through appropriate low-pass filters, e.g.,
by means of a convolution product:

êðxÞ ¼ caðxÞ � eðxÞ ¼
Z

X1

caðx� yÞeðyÞdy; ð1Þ

r̂ðxÞ ¼ caðxÞ � rðxÞ ¼
Z

X1

caðx� yÞrðyÞdy; ð2Þ

where dy means that integration is carried out with respect to y,
and X1 is the (convex) infinite domain in which X is embedded.
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