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a b s t r a c t

A homogenization procedure to estimate the macroscopic strength of nonlinear matrix-inclusion com-
posites with different strength characteristics of the matrix and inclusions, respectively, is presented
in this paper. The strength up-scaling is formulated within the framework of the yield design theory
and the linear comparison composite (LCC) approach, introduced by Ponte Castaneda (2002) and
extended to frictional models by Ortega et al. (2011), which estimates the macroscopic strength of com-
posite materials in terms of an optimally chosen linear thermo–elastic comparison composite with a sim-
ilar underlying microstructure. In the paper various combinations for the underlying material behavior
for the individual phases of the composite are considered: The matrix phase can be a quasi frictional
material characterized either by a Drucker–Prager-type (hyperbolic) or an elliptical strength criterion,
which predicts a strength limit also in hydrostatic compression, while the inclusion phase either may
represent empty pores, pore voids filled with a pore fluid, rigid inclusions, or solid inclusions, whose
strength characteristics also maybe described by a Drucker–Prager-type or an elliptical strength criterion.
For generating the homogenized strength criterion efficiently in such general cases of matrix-inclusion
composites, a novel algorithm is proposed in the paper. The validation of the proposed strength homog-
enization procedure for selected combinations of strength characteristics of the matrix material and the
inclusions is conducted by comparisons with experimental results and alternative existing strength
homogenization models.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The macroscopic properties of materials characterized by a het-
erogeneous microstructure, such as natural or artificial composite
materials (concrete, geological materials, fibre reinforced compos-
ites) is governed by the properties, the shape and topology of the
individual components (generally denoted as material phases) re-
lated often to a large range of spatial scales. For the determination
of macroscopic properties of heterogeneous materials on the basis
of the knowledge of their microstructure, appropriate multiscale
methods are required. Such methods may be based upon computa-
tional multiscale methods or on analytical methods such as contin-
uum micromechanics. Computational multiscale methods are
attempting to directly numerically resolve the meso- or micro-
structure of heterogeneous materials by means of numerical dis-
cretization methods such as the finite element method and
generate macroscopic quantities from homogenization over the
subscale model (the representative elementary volume). For a sur-

vey of this class of multiscale methods we refer to Hain and Wrig-
gers (2006), Sun et al. (2011) and Fish and Wagiman (1993). While
this class of methods evidently allows a detailed analysis of the
interactions between phases at lower scales, its computational ef-
fort is enormous. In cases, when homogenized properties, such as
macroscopic elastic stiffnesses, viscosities, permeabilities or mate-
rial strength are required based upon local information from the
different phases (this task will be denoted in the following as
‘‘upscaling’’), analytical methods may serve as a powerful concep-
tual basis. As far as the upscaling of linear properties is concerned,
continuum micromechanics provides a well established frame-
work. By now classical homogenization models are available for
the homogenization of elastic properties (e.g. Zaoui, 2002;
Dormieux et al., 2006), electrical conductivity (e.g. Hermance,
1979; Torquato, 1985), and, more recently, for diffusion properties
(Dormieux and Lemarchand, 2001, Lemarchand et al., 2003,
Pivonka et al., 2004, Scheiner et al., 2008) and elastic viscosities
(e.g. Friebel et al., 2006; Sanahuja, 2013).

In contrast, the determination of strength properties of hetero-
geneous materials, due to the nonlinear nature of the mechanical
principles that underly strength properties, still remains a chal-
lenge. Among the rare contributions, earlier methods for strength
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homogenization were mainly based on limit analysis that provides
estimates for the dissipation at plastic collapse by employing the
lower and upper bound theorems of yield design (e.g. Melan,
1936; Salencon, 1990). By solving a yield design boundary value
problem, the strength capacity of various highly idealized compos-
ite materials, such as fiber reinforced composites (de Buhan and
Taliercio, 1991), and fluid-saturated porous materials (de Buhan
and Dormieux, 1999) can be determined. An upscaling scheme
based on numerical limit analysis was presented in Fuessl et al.
(2008) for the determination of strength envelopes of porous mate-
rials, taking localized material failure into account. An alternative
approach was proposed and improved by Ponte Castaneda (1991,
1996, 2002), which is characterized by the use of optimally chosen,
so-called ‘‘linear comparison composites’’ (LCC) to deliver esti-
mates for the effective mechanical properties of porous and rigidly
reinforced composites, that are exact to second-order in the heter-
ogeneity contrast.

Barthelemy and Dormieux (2003, 2004) and Maghous et al.
(2009)) have proposed an analytical approach for the strength
homogenization of cohesive–frictional matrix materials with pores
or rigid inclusions. The main underlying idea of this approach is to
replace the corresponding limit analysis by a sequence of visco-
plastic problems. For the resulting homogenized properties at the
limit stress or strain state the modified secant method is used.
The model has been applied for the prediction of the macroscopic
strength of highly filled composite materials, such as cement-
based mortars, for which the friction coefficient of the composite
is higher than that of the matrix (Lemarchand et al., 2002; Heuk-
amp, 2005). Alternatively, Pichler and Hellmich estimate the stiff-
ness and strength of cement paste through an elastic limit analysis,
since in particular for the cement paste, the elastic limit of hydrate
govern the overall elastic limits (Pichler et al., 2009; Pichler and
Hellmich, 2011).

More recently, Ortega et al. (2011) have developed a strength
homogenization method for cohesive–frictional materials affected
by the presence of porosity and rigid-like inclusions. Within the
framework of the yield design theory (Salencon, 1990) the linear
comparison composite approach (Ponte Castaneda, 2002; Lopez-
Pamies and Ponte Castaneda, 2004) has been extended from the
application of nonlinear hyper-elastic composites to elasto–plastic
matrix-inclusion composites, allowing consideration of the fric-
tional behavior of the matrix material in case that it may be repre-
sented by means of a Drucker–Prager-type strength criterion.

In this paper, the LCC method is adopted to investigate the
applicability of this approach for more general classes of heteroge-
neous materials such as cementitious or geological materials con-
sisting of different material phases, such as aggregates or pores. In
addition to an idealization as two-phase porous materials, charac-
terized by a solid matrix and pores either filled by air or by water,
also three phase composites, in which additional solid inclusions
are embedded within the solid matrix, are considered in the
homogenization approach. More specifically, the matrix phase is
considered as a cohesive–frictional material represented either
by a Drucker–Prager-type (hyperbolic) strength criterion or an
elliptical strength criterion, which predicts a strength limit also
in hydrostatic compression. In the case of solid (deformable) inclu-
sions, their strength characteristics are also assumed to be de-
scribed either by a Drucker–Prager-type or an elliptical strength
criterion, however, with different strength properties as compared
to the matrix.

The remainder of the paper is structured as follows: Section 2
recalls the theoretical background of the adopted LCC method. In
Section 3 a detailed description of the implementation of the LCC
methodology for matrix-inclusion composites is presented, fol-
lowed by the application to the above-mentioned combinations
of matrix-inclusion morphologies in Section 4. To this end, a novel

efficient algorithm is proposed to generate the homogenized
strength criterion in Section 4. The resulting macroscopic strength
envelopes obtained for selected scenarios for nonlinear composites
are validated in Section 5 by means of comparisons with experi-
mental results and with analytical estimations obtained from other
strength homogenization models.

2. Theoretical background

Within the framework of yield design theory (Salencon, 1990),
we adopt the strength homogenization method proposed by
Ortega et al. (2011) based on the application of the LCC theory
(Ponte Castaneda, 2002). In order to motivate the forthcoming
developments, we recall briefly the elementary concepts of the
yield design theory and the LCC approach.

2.1. Upper bound theorem and yield design

The problem of strength homogenization of a composite mate-
rial composed of different material phases is framed within the
yield design theory, with the focus of determining the macroscopic
dissipation capacity through limit analysis. The lower bound theo-
rem based on statically and plastically compatible stress states
underestimates the actual dissipation capacity, whereas the upper
bound theorem associated with a kinematically compatible veloc-
ity field satisfying the normality rule of plastic flow overestimates
it. The upper bound theorem is generally preferred against to the
lower bound theorem, because the kinematically compatible
velocity field is easier to find than the statically admissible stress
field (Ulm and Coussy, 2003, chap. 9).

We consider a composite material composed of different mate-
rial phases characterized by a smaller length scale as compared to
the scale of a representative elementary volume (REV) of the com-
posite. Considering the properties of the individual phases on the
grain size level (i.e. the scale of the individual inclusions, denoted
in the sequel as ‘‘micro-scale’’), the strength characteristics of a
material phase i within the composite is assumed to be character-
ized by an individual convex failure criterion expressed in terms of
the CAUCHY stress tensor r at the micro-scale:

F i½r� 6 0 () r 2 Gi: ð1Þ

Gi denotes the convex domain of admissible microscopic stress
states. Accordingly, at plastic collapse the maximum dissipation
capacity of the material phase is defined by the support function
pi of Gi

pi½d� ¼ sup
r2Gi

r : df g; ð2Þ

where d½v� is the strain rate corresponding to the velocity field v ,
and ‘sup’ denotes the supremum, or least-upper bound, of the set
Gi. For a given value of d, the condition r : d ¼ pi½d� defines a hyper-
plane H½d� in the stress space, which is tangent to the boundary @Gi

of the admissible stress domain Gi at the stress point r, where d is
normal to @Gi (see Fig. 1). This is the so-called dual definition of the
strength domain Gi under the condition of associated plasticity
(Ulm and Coussy, 2003), i.e. Gi can be defined either through the
failure criterion F i or the support function pi.

The main purpose of the yield design approach is the evaluation
of the macroscopic support function Phom, and the determination
of the macroscopic stress R at the boundary of the macroscopic
strength domain @Ghom. For a given macroscopic strain rate D,
which is the average of the microscopic strain rate d over the do-
main X occupied by the composite,

D ¼ d ¼ 1
jXj

Z
X

ddX; ð3Þ
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