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a b s t r a c t

This paper presents an extension of the local second gradient model to multiphasic materials (solids par-
ticles, air, water) and including the cavitation phenomenon. This new development was made in order to
model the response of saturated dilatant materials under deviatoric stress and undrained conditions and
possibly, in future, the behavior of unsaturated soils. Some experiments have showed the significance of
cavitation for the hydromechanical response of materials. However, to date and as far as we are aware, no
attempt was made to implement the cavitation as a phase change mechanism with a control of pore pres-
sure. The first part of the results section explores the effects of permeability, dilation angle and loading
rate on the stability of shear bands during a localization event. The reasons underlying the band instabil-
ity are discussed in detail, which helps defining the conditions required to maintain stability and inves-
tigating the effects of cavitation without parasite effect of materials parameters or loading rate. The
model showed that, if a uniform response is obtained, cavitation triggers localization. However, in case
of a localized solution, cavitation follows the formation of the shear band, with the two events being quite
distinct.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Like many engineering materials, geomaterials can exhibit elas-
tic and/or inelastic deformations depending on the stress state they
are subjected to. While isotropic compression leads to contraction,
a deviatoric stress can result in contraction or dilation, depending
on the initial density of the soil. Experimental research has shown
that the volumetric deformations in specimens subjected to
deviatoric stress (typically by triaxial or biaxial loading) are not
necessarily uniform: shear bands can develop and, in them, takes
place most of the inelastic volume changes. The formation of shear
bands is only one expression of the phenomenon referred to as
‘‘localization’’ but it is certainly the most commonly encountered
in Geomechanics. Localization in soils has been extensively studied
experimentally, theoretically and numerically (e.g. McManus
and Davis, 1997; Mokni and Desrues, 1999; Viggiani et al., 2001;
Schrefler et al., 1996; Rice, 1976; Loret and Prevost, 1991; Runes-
son et al., 1996; Larsson et al., 1996; Liu et al., 2005; Kotronis
et al., 2008, to name a few).

It is well known that when dealing with strain localization, the
classical continuum mechanics does not apply anymore
(Pijaudier-Cabot and Bažant, 1987). Although classical continuum
mechanics can provide reasonable insight into the conditions
under which strain localization may occur (Rice, 1976), such
approach fails to predict the size of the shear band and the post-
localization behavior.

One option to overcome this issue is to resort to an enhanced
continuum approach where information about an internal length
related to the width of the band is given. Several enhanced contin-
uum techniques have been proposed in the literature and the read-
er can refer to Chambon et al. (2004) for a discussion about these.
The local second gradient is one of these enhanced medium models
that presents the advantage to have the kinematic enrichment
independent from the constitutive equations used to describe the
soil behavior. The local second gradient model is based on the pio-
neering work of Mindlin (1964, 1965) and Germain (1973a,b) and
it has been derived in Chambon et al. (2001) for a monophasic
material and extended to biphasic materials by Collin et al.
(2006). Not only the local second gradient model can handle the
post localization behavior but it was also demonstrated that the
localization is mesh independent (Matsushima et al., 2002; Collin
et al., 2006; Sieffert et al., 2009).
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As far as the authors are aware, no attempt has been made to
apply an enhanced continuum approach to dilatant saturated
material under deviatoric stress and undrained conditions. Collin
et al. (2006) did not ascribe any dilation angle to the material they
model so that the material remained biphasic (solid and water)
throughout the simulation. Indeed, tests from the literature
(McManus and Davis, 1997; Mokni and Desrues, 1999) show that,
under the conditions above described, the pore pressure progres-
sively shifts from the positive to negative range when the sheared
specimen experiences dilation with formation of a third phase
(gas) at cavitation. This modifies the effective stress state in a first
instance, but also creates a perturbation in the system when cavi-
tation occurs.

Not accounting for cavitation when modelling undrained
testing of a saturated sample leads to a continuously increase of
the global reaction force caused by the increase of effective
stresses. This issue was shown to be particularly problematic with
constitutive equations accounting for the degradation of the
strength of materials (Loret and Prevost, 1991).

Using a dynamic numerical framework, Schrefler et al. (1996)
modeled cavitation for a soil with high permeability (0:25�
10�3 m=s) via a curve similar to a soil retention curve. However,
the authors did not explicitly quantify the pressure at which cavi-
tation is triggered. Also, the pore pressure post-cavitation follows
the retention curve and is not limited to the partial vacuum created
in the air phase. This is why unrealistic values of suction, as large as
�8000 kPa, have been reached.

More recently, Liu and Scarpas (2005) conducted some
numerical investigations on localization with hydro-mechanical
coupling. They modeled a sandy type material with a range of per-
meability and observed variations in pore pressure that they
attributed to cavitation. However, as far as we are aware, the cav-
itation process was not explicitly accounted for in their model and
their conclusions seem questionable. In fact, the perturbation in
pore pressure occurred at about �20 kPa, which is far from the
physical cavitation pressure. The same year, Liu et al. (2005) looked
at the effect of the material permeability on the formation of the
bands. However, although the observations were relevant, the
authors did not provide any in depth explanations of the results.

The aim of this paper is to provide some better understanding of
the hydro-mechanical coupling in a saturated material subjected to
deviatoric stress in undrained conditions. First, the biphasic second
gradient model developed by Collin et al. (2006) has been extended
to account for three phases. This is a necessary step to observe cav-
itation and highlight its effects on the mechanical response. The
presentation of the new model, with the implementation of cavita-
tion, constitutes the first part of this paper. Then, some insight is
provided into the stability of shear bands with an emphasis on
the effect of permeability, loading rate and dilation angle. As a re-
sult, a mapping of stability conditions pertaining to localized solu-
tions is proposed. Finally, the effects of cavitation are discussed in
the context of homogeneous and localized responses of specimens.

2. Formulation of the triphasic model

2.1. Local multiphasic second gradient

Phase changes are herein considered within a saturated speci-
men subjected to negative pore pressure. In other words, cavitation
has been implemented. It corresponds to the transformation of
liquid water into vapor water under reduction of pressure and at
constant temperature. Note that the specimen is initially satu-
rated; hence, there is no pre-existing air as such (occluded air
nuclei are not modeled).

For the sake of clarity, some elements of terminology have to be
defined before detailing the model: in the rest of the paper,

‘‘water’’ refers to liquid water occupying the pores of the specimen
while ‘‘gas’’ refers to the vapor water having formed as a result of
phase change.

Geomechanics convention is used: compressive stresses are
positive.

The model presented in the following pertains to quasi-static
conditions with large strains and in unsaturated conditions under
Richard’s assumptions (vapor water pressure is constant). In addi-
tion, isothermal conditions are assumed, grains are incompressible
and undrained boundary conditions prevail: the total mass of the
specimen is kept constant during the test.

The unknowns of the second gradient model are the (macro)
displacement ui and the microkinematic gradient v ij while the var-
iable pertaining to the liquid water flow equation is the pore water
pressure pw (possibly negative in unsaturated case).

The local second gradient is based on the assumption that the
microkinematic gradient v ij is equal to the macro-displacement
gradient Fij. This implies similar relations for virtual entities:

v ij ¼
@ui

@xj
¼ Fij and v�ij ¼

@u�i
@xj
¼ F�ij ð1Þ

Inspired by Terzaghi’s formulation, an effective stress is herein
defined as:

rt
ij ¼ r0tij þ Sw;t

r pw;tdij þ Sg;t
r pgdij ð2Þ

where rt
ij is the total stress, r0tij is the effective stress, pw;t is the fluid

pressure, pg is the gas pressure, Sw;t
r is the relative degree of satura-

tion of water and dij is Kronecker’s delta. Sg;t
r is the relative degree of

saturation of gas defined as:

Sw;t
r þ Sg;t

r ¼ 1 ð3Þ

The density of the mixture is:

.mix;t ¼ .sð1� /tÞ þ Sw;t
r .w;t/t þ ð1� Sw;t

r Þ.g/t ð4Þ

qs is the density of the solid grains (assumed to be incompressible,
i.e. .s ¼ constant), .w;t is the water density, ;t is the porosity de-
fined as /t ¼ Xp;t=Xt where Xt is the current volume of a given mass
of skeleton and Xp;t the corresponding porous volume.

In a weak form (virtual work principle), the balance equation of
momentum for the mixture can thus be written as:

Z
Xt

rt
ij
@u�i
@xt

j

þRt
ijk

@2u�i
@xt

j@xt
k

 !
dXt ¼

Z
Xt

.mix;tgiu
�
i dXt þ

Z
Ct

X

ðtiu�i þ TiDu�i ÞdCt

ð5Þ

where u�i is any kinematically admissible virtual displacement field,
rt

ij is the Cauchy stress (total stress), Rt
ijk is the double stress dual of

the virtual second micro kinematic gradient, xi is the current coor-
dinate, gi is the gravity acceleration, �ti is the external (classical)
forces per unit area and �Ti an additional external (double) force
per unit area, both applied on a part Ct

X of the boundary of Xt . Dq
refers to the normal derivative of any quantity q (for instance
Dui ¼ nk@ui=@xk where nk is the normal to the assumed C1
boundary).

Eq. (5) above shows the coupling between stresses and pore
pressure through the total stress. However, consistent with Collin
et al. (2006), the water and gas pressures do not have any direct
influence at microstructural level.

Note that the second gradient term is only activated after for-
mation of a shear band and hence, it does not influence the plastic
yielding of the specimen. The coupling between macro and micro
scales is used to control the width of the plastic loading band.

In order to used C0 functions for the displacement field (i.e. only
first derivatives of the displacement), kij Lagrange multipliers are
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