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a b s t r a c t

In this paper we consider a nonlocal elasticity theory defined by Eringen’s integral model and introduce,
for the first time, a boundary layer method by presenting the exponential basis functions (EBFs) for such a
class of problems. The EBFs, playing the role of the fundamental solutions, are found so that they satisfy
the governing equations on an unbounded domain. Some insight to the theory is given by showing that
the EBFs satisfying the Navier equations in the classical elasticity theory also satisfy the governing equa-
tions in the nonlocal theory. Some additional EBFs are particularly obtained for the nonlocal theory. In
order to use the EBFs on bounded domains, the effects of the boundary conditions are taken into account
by truncating the kernel/attenuation function in the constitutive equations. This leads to some residuals
in the governing equations which appear near the boundaries. A weighted residual approach is employed
to minimize the residuals near the boundaries. The method presented in this paper has much in common
with Trefftz methods especially when the influence area of the kernel function is much smaller than the
main computational domain. Several one/two dimensional problems are solved to demonstrate the way
in which the EBFs can be used through the proposed boundary layer method.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Nonlocal elasticity models have received considerable attention
by the researches intending to design or analyze Micro/Nano struc-
tures. The models extend the main concepts in the classical theory
of elasticity to approximate the behavior of particles, as small as
molecules or atoms, and therefore they play the role of models
with bridging scales in the analysis of multi-scale problems.
According to Eringen (1987), lack of an internal characteristic
length in the classical theory limits the application of this theory
in the modeling of physical problems in which the influence of
microstructural effects is significant. The first attempts to modify
the continuum approaches were made by Kröner (1967), Kunin
(1984) and Krumhansl (1968). Improved formulations were pro-
posed later by Edelen and Laws (1971), Edelen et al. (1971) and
Eringen and Edelen (1972). Extensive studies by Eringen and Kim
(1974) and Eringen et al. (1977) on nonlocal elasticity problems,
with linear homogeneous and isotropic materials, must be men-
tioned here. The readers can find comprehensive surveys of non-
local plasticity and damage models in the review papers by
Bažant and Jirásek (2002) or Jirásek and Rolshoven (2003). More

investigations on the choice of kernel function in nonlocal damage
problems can be found in the studies by Borino et al. (2003).

Similar to the cases in the classical theories, the exact solution
of problems defined with a nonlocal theory is almost impossible
to achieve except for very few 1D cases. The readers may refer to
the early studies by Pisano and Fuschi (2003), and more accurate
and complete ones by Challamel and Wang (2008), Challamel
et al. (2009a,b) and Benvenuti and Simone (2013). With the lack
of analytical solutions, the use of numerical methods seems to be
inevitable. The use of finite element method (FEM) has been re-
ported in the studies by Polizzotto (2001) and Pisano et al.
(2009). The studies by Schwartz et al. (2012) on the application
of the boundary element method (BEM) should be mentioned here.

As indicated in almost all the aforementioned studies, the
numerical solution of nonlocal elasticity problems is very time
consuming. Therefore any mesh reduction approach may be con-
sidered vital in order to reduce the computational time. Neverthe-
less, as the numerical simulation tools are advancing, the lack of
benchmark problems to access the capabilities of the numerical
methods is increasingly felt especially in multi-dimensional cases.
The objective of the recent studies by the authors is to attain such
a goal (see Abdollahi and Boroomand, 2013). The paper presents a
series of low-residual solutions for 1D and 2D problems using
Chebyshev polynomials. Such polynomials proved to be useful in
the solution of many problems in physics and engineering (see
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Boyd, 2000) but of course may not play the role of fundamental
solutions in nonlocal elasticity problems. Therefore, in order to
solve the benchmark problems, some energy principles were used
which require writing integral equations over the solution domain
leading to a very expensive procedure (considering the integrals
needed in the constitutive relations). Since the approach followed
in that reference is extremely time consuming, the results of the
benchmark solutions were given explicitly through a series of ta-
bles. The same approach may be followed for problems in 3D but
of course the computational cost will be enormous.

In seeking low-residual solutions, one may think of using a
Trefftz approach, as in the method of fundamental solutions
(MFS) (see Kupradze and Aleksidze, 1964 or Fairweather and
Karageorghis, 1998) or the BEM (see Brebbia and Dominguez,
1998) for instance, in which a series of predefined fundamental ba-
sis functions satisfying the governing equations are used (see also
Zielinski and Herrera, 1987, Kita, 1995, Chen et al., 2009 for more
details of Trefftz methods). However, the main hurdle in this way
is the evaluation of the bases or the Green’s functions. This paper
deals with such a concept. After finding the fundamental bases,
they may be used in a variety of simulation tools (letting alone
the insight provided by them) including the one presented in this
paper.

In this paper we first introduce some fundamental basis func-
tions which fully satisfy the governing equations in a nonlocal
elasticity theory defined by an integral constitutive low on un-
bounded domains. The bases are found in the form of exponential
functions with complex exponents. The readers may find the
application of similar bases to other engineering problems in
the studies by Boroomand et al. (2010), Shamsaei and Boroomand
(2011), Shahbazi et al. (2011a,b, 2012) and Azhari et al. (2013a,b)
for static and time harmonic problems and the works by Zandi
et al. (2012a,b), Hashemi et al. (2013), Movahedian et al. (2013)
and Movahedian and Boroomand (2014) for transient problems
(see also the extension of the method in Boroomand and Noor-
mohammadi, 2013 for more general elasticity problems). In
deriving such exponential basis functions (EBFs) we show that
some of the bases are identical to those found for the classical
elasticity theory earlier by the second author and co-workers
(Boroomand et al., 2010). However, there are also some addi-
tional bases which are particularly found for the nonlocal theory.
We present the closed form of the EBFs for 1D/2D problems using
various attenuation/kernel functions. This gives an insight to the
behavior of the material with nonlocal constitutive laws.

Having found the EBFs, we proceed to use them in a boundary
layer approach. The term ‘‘boundary layer’’ stems from the fact
that the use of the EBFs, defined on unbounded domains, in a
bounded problem produces some residuals in a region close to
the boundaries. To reduce such residuals, we employ a numerical
approach with weights defined just on the boundary layer zone.
With such features, the method may be classified in the Trefftz
type of methods, similar to the BEM or MFS.

Letting alone the achievable accuracy by Trefftz methods, as is
the case for the boundary layer method proposed here, the compu-
tational time saved by using them may be expected to be similar to
the save of time when BEM and FEM codes are used. This especially
becomes noticeable in the solution of problems defined on large
domains with relatively small influence distance of nonlocal effect.
The importance of this effect may be best understood when 3D
problems are of concern. This, however, is beyond the scope of this
paper.

In this paper, we demonstrate the capabilities of the method, in
some 1D/2D problems, by comparing the results with the bench-
mark problems recently provided by the authors (Abdollahi and
Boroomand, 2013) using Chebyshev polynomials.

The layout of the paper is as follows. In the next section we
present an overview of the theory used in this paper. The way that
the EBFs are extracted from the governing equation is explained in
Section 3. In Section 4 we discuss on the choice of the attenuation/
kernel function used. Section 5 is devoted to the introduction of a
boundary layer method using the EBFs found. The numerical
experiments are presented in Section 6 where we validate the re-
sults for 1D/2D problems. The conclusions made throughout the
paper are summarized in Section 7.

2. Nonlocal model; an overview

We consider an elastic body occupying X in a 1D/2D space. The
equilibrium equations in the local/nonlocal elasticity problems are
written as

STrþ b ¼ 0 in X: ð1Þ

The following boundary conditions are also considered

u ¼ uB on Cu; ð2Þ

and

~nr ¼ t on Ct: ð3Þ

In the above relations r is the vector of stresses, u is the vector of
displacements, S is the well-known operator for defining the strains
as e = Su, b is the vector of body force, uB and t are the boundary
displacement and tractions, respectively, and ~n is a matrix contain-
ing the components of the unit vector normal to the boundary for
defining the tractions.

According to Eringen’s model (2002) the stresses at a generic
point as x = [x, y]T are dependent on the strains at other points of
the domain, here known as x0 = [x0, y0]T. The strain and stress fields
satisfy the following constitutive integral equation

rðxÞ ¼
Z

X
kðx0;xÞDeðx0ÞdXx0 8x; x0 2 X: ð4Þ

In the above relation D is the matrix of material constants as in the
classical elasticity theory which is generally written as

D ¼
D1 D2 0
D2 D1 0
0 0 D3

0
B@

1
CA ð5Þ

for 2D problems. The attenuation/kernel function k(x0, x) plays the
role of a measure for the dependence of the stresses at x to the
strains at x0 (in (4) dXx0 denotes the volume fraction at x0). When
isotropy is of concern, which is the case in this study, k(x0, x) is writ-
ten as a function of the distance between x and x0, i.e.

kðx0; xÞ ¼ kðjx0 � xjÞ: ð6Þ

We use such a form in the rest of the formulation given in this pa-
per. The function is chosen so that it reaches to its maximum at
x = x0 and attenuates for large distances between x and x0, i.e.

lim kðjx0 � xjÞ
jx0�xj!1

¼ 0; ð7Þ

and alsoZ
X1

kðjx0 � xjÞdX ¼ 1; ð8Þ

analogous to a Dirac delta function, e.g. when a very sharp kernel
function is used to recover the constitutive relations in the classical
theory (in (8) X1 denotes an unbounded domain). It is clear that
the sharpness of k(|x � x0|) represents an internal characteristic
length for the material.
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