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a b s t r a c t

A stress gradient elasticity theory is developed which is based on the Eringen method to address nonlocal
elasticity by means of differential equations. By suitable thermodynamics arguments (involving the free
enthalpy instead of the free internal energy), the restrictions on the related constitutive equations are
determined, which include the well-known Eringen stress gradient constitutive equations, as well as
the associated (so far uncertain) boundary conditions. The proposed theory exhibits complementary
characters with respect to the analogous strain gradient elasticity theory. The associated boundary-value
problem is shown to admit a unique solution characterized by a Hellinger–Reissner type variational prin-
ciple. The main differences between the Eringen stress gradient model and the concomitant Aifantis
strain gradient model are pointed out. A rigorous formulation of the stress gradient Euler–Bernoulli beam
is provided; the response of this beam model is discussed as for its sensitivity to the stress gradient
effects and compared with the analogous strain gradient beam model.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Eringen (1983) proposed a method to address boundary-value
problems of nonlocal (integral) elasticity whereby the inherent
integro-differential equations are replaced by differential equa-
tions. The method is grounded on the constitutive relation

C : e|ffl{zffl}
s

¼ r� ‘2Dr|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Lr

ð1Þ

where ‘ is a material constant with the meaning of internal length
scale parameter, D is the Laplacian operator and C is the usual
fourth order moduli tensor of isotropic elasticity. With the language
of nonlocal elasticity, (1) can be qualified as a differential relation
(featured by the operator L :¼ 1� ‘2D) between the nonlocal stress
field r and the local strain field e (or the associated local Hookean
stress s :¼ C : e), that is, between two fields which more naturally
are related through an integral-type relation as

rðxÞ ¼
Z

V
aðjx0 � xjÞsðx0Þdvðx0Þ ð2Þ

Here, V is the material domain and aðjx0 � xjÞ is the influence func-
tion (Eringen, 2002). This is a positive function of the distance
jx0 � xj between the field point x and the source point x0; it has a

maximum value at x0 ¼ x and decays more or less rapidly with
the increasing distance jx0 � xj, becoming vanishing at all points x0

located out of a sphere of (relatively small) radius R and centered
at x. The equivalence between (1) and (2) stems from the restriction
that a is the Green function of the operator L. In fact, on applying
the latter operator to (2), since La ¼ dD ¼ Dirac delta, (1) can be
readily obtained.

The nonlocal stress field r is required to satisfy the standard
equilibrium equations, namely,

r � rþ b ¼ 0 in V ; n � r ¼ �t on Sf ð3Þ

where b denotes body forces within V and �t surface forces assigned
over the free part Sf of the boundary surface S ¼ @V ; n is the
unit outward normal to S. The latter body forces are presumed to
include the inertia forces, if any. Furthermore, the local strain
field e is required to satisfy the standard compatibility equations,
that is,

e ¼ rsu in V ; u ¼ �u on Sc ð4Þ

where rs denotes the symmetric part of the gradient operator r,
whereas �u is the imposed displacement on the constrained part
Sc ¼ S n Sf of S.

The Eringen method consists in associating (3) and (4) with
the differential constitutive equations of (1) instead of the inte-
gral type ones of (2). This means that the non-locality effects of
the original integral-type problem enter into play within the
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differential-type problem as gradient effects originating from a
source identified with the Cauchy stress r. In other words, the
original nonlocal integral-type model is replaced with a stress
gradient model. Indeed the latter model finds itself in strong
contrast with the well-known strain gradient model widely
employed to describe size effects and other phenomena of small
scale solids.

The popularity of the above Eringen method stems from the rel-
ative easiness with which a differential type boundary-value prob-
lem can be solved with respect to one of integro-differential
nature. Indeed, on combining (1), (3) and (4), one easily obtains
the following displacement equation

Lu ¼ �b� in V ð5Þ

where

b� :¼ Lb ¼ b� ‘2Db ð6Þ

The symbol L denotes the classical set of second-order partial dif-
ferential equations (PDEs) of isotropic elasticity, that is, denoting
by k and l the Lamé constants,

Lu :¼ lDuþ ðkþ lÞrr � u: ð7Þ

The PDE system (5) has to be solved in association with the bound-
ary conditions (3)2 and (4)2, of which the former carries in the stress
r. This implies that the obtained boundary-value problem cannot in
general be solved without considering the PDEs (1) together with
the associated boundary conditions (heuristically devised, since
their exact form is unknown from the wide literature, to the
author’s knowledge).

The above method has been widely used to address problems
within nanotechnology, crack problems at the microscale, disloca-
tion analysis within unbounded domains, etc. For more complex
problems an approximation can be taken by replacing the coupling
boundary condition (3)2 with a similar uncoupling one in which
the nonlocal stress r is replaced by the local stress s. In this way
the resulting boundary-value problem identifies—except for the
body force, if any—with the classical one, whereas the related
stress field r may then be obtained by solving the PDEs (1), (in-
deed, an operation which requires due care since there cannot be
any guarantee that the derived stress field satisfies the equilibrium
equations). It is not the purpose of the present paper to review the
extensive literature on this topic; we just mention some represen-
tative works and the references therein, namely Eringen (1983,
2002), Lazar et al. (2006a,b), Askes and Gutiérrez (2006), Reddy
(2007), Reddy and Pang (2008), Peddieson et al. (2003), Kumar
et al. (2008).

The present paper is more interested in other aspects of the
Eringen method, emerging when the stress gradient model dis-
cussed previously is compared with a strain gradient model fea-
tured by a constitutive equation similar to (1), that is,

r ¼ C : ðe� ‘2DeÞ ð8Þ

where r is the Cauchy stress satisfying the equilibrium equations
(3) and e is the standard strain satisfying the compatibility equa-
tions (4). The gradient elasticity model based on (8)—often referred
to as the Aifantis elasticity model (Aifantis, 1992; Ru and Aifantis,
1993; Altan and Aifantis, 1997)—can be viewed as a particulariza-
tion of a more general strain gradient model devised by Mindlin
(1965), Mindlin and Eshel (1968), Wu (1992); see Askes and
Aifantis (2011) for an overview on the latter models. On comparing
(8) and (1) with each other, one can observe that the stress gradient
model (1) exhibits a character of complementarity (in the
mechanical sense) with respect to the strain gradient model (8).
However, whereas the thermodynamic consistency of (8) as a
gradient constitutive model has been already assessed within the

literature (see e.g., Polizzotto, 2011 and the literature therein), no
such investigations seem to exist for (1). It is therefore quite natural
to raise the following question:

Is there any thermodynamics-based procedure which, like the
analogous procedures devised for the strain gradient models,
may lead to the Eringen constitutive equation (1) and to the related
boundary conditions?

The main purpose of the present paper is to give a positive an-
swer to the latter question. Indeed, it will be shown that any ther-
modynamics-based procedure devised for a strain gradient model,
but suitably changed into one of complementary nature, may con-
stitute a procedure suitable to cope with a stress gradient model.
This requires that (i) the principle of the virtual power (PVP) (for
velocities) must be replaced with the complementary PVP (for
stress rates), and (ii) the internal energy and the (Helmholtz) free
energy must be replaced with the enthalpy and the (Gibbs) free en-
thalpy, respectively.

The outline of the paper is as follows. In Section 2, some ther-
modynamics premises are developed in the purpose to obtain a
complementary form of the Clausius–Duhem inequality expressed
in terms of the Gibbs function, that is, a thermodynamic potential
depending on the stress, the temperature and, possibly, the stress
gradient. In Section 3, an extended form of the principle of the vir-
tual power (PVP) for stress gradient materials is presented, which
is the complementary counterpart of the analogous PVP for strain
gradient materials well-known from the literature (Mindlin,
1965; Germain, 1973), and which leads to the higher order com-
patibility equations. In Section 4, the results derived in the preced-
ing sections are used to determine the restrictions on the
constitutive equations for a stress gradient material; as an alterna-
tive to the PVP, a complementary form of the so-called energy
residual can be used. The obtained restrictions include the consti-
tutive equations (coinciding with the Eringen stress differential
equations (1)), as well as the related boundary conditions in the
form @nrij ¼ 0 at all points of the boundary surface. In Section 5
the boundary-value problem associated to the Eringen stress gradi-
ent model is addressed and shown to admit a unique solution char-
acterized by two variational principles. One of the latter principles
is a minimum principle for the problem to evaluate the stress field
associated to a specified strain field through the gradient stress–
strain relation and related boundary conditions; the other is a
Hellinger–Reissner type principle for the stress and displacement
response of a structure subjected to given loads. For comparison
purposes, the boundary-value problem associated to a particular
class of strain gradient materials (Aifantis elasticity model) is
addressed in Section 6, pointing out the main differences between
the two models. In Section 7 the Hellinger–Reissner principle is
used to derive a complete theory for the Euler–Bernoulli beam,
which is discussed in contrast to the analogous strain gradient
beam model. Conclusions are drawn in Section 8.

Notation. A compact notation is used, with boldface letters
denoting vectors or tensors of any order. The scalar product
between vectors or tensors is denoted with as many dots as the
number of contracted index pairs. For instance, denoting by
u ¼ fuig;v ¼ fv ig, e ¼ feijg;r ¼ frijg; s ¼ fsijkg and A ¼ fAijkhg
some vectors and tensors, one can write: u � v ¼ uiv i, r : e ¼ rijeij,
A : e ¼ fAijkhekhg, A..

.
s ¼ fAijkhsjkhg, AT ..

.
s ¼ fAijkhskjig. The summation

rule for repeated indexes holds and the subscripts denote compo-
nents with respect to an orthogonal Cartesian co-ordinate system,
say x ¼ ðx1; x2; x3Þ. The tensor product is simply indicated as, for in-
stance, uv ¼ fuiv jg, and thus A : uv ¼ fAijkhukvhg. An upper dot
over a symbol denotes its (material) time derivative, _u ¼ du=d t.
The symbol r denotes the spatial gradient operator, i.e.,
ru ¼ f@iujg;rs is the symmetric part of r, and D is the Laplacian
operator. The symbol :¼ means equality by definition. Other
symbols will be defined in the text at their first appearance.
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