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a b s t r a c t

This paper presents an improved exponential transformation for nearly singular boundary element inte-
grals in elasticity problems. The new transformation is less sensitive to the position of the projection
point compared with the original transformation. In our work, the conventional distance function is mod-
ified into a new form in the polar coordinate system. Based on the refined distance function, an improved
exponential transformation is proposed in the polar coordinate system. Moreover, to perform integra-
tions on irregular elements, an adaptive integration scheme considering both the element shape and
the projection point associated with the improved transformation is proposed. Furthermore, when the
projection point is located outside the integration element, another nearest point is introduced to subdi-
vide the integration elements into triangular or quadrilateral patches of fine shapes. Numerical examples
are presented to verify the proposed method. Results demonstrate the accuracy and efficiency of our
method.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Dealing with singular integrals and nearly singular integrals has
been a seemingly daunting task since the early days of the bound-
ary element method (BEM) (Aliabadi et al., 1985; Aliabadi, 2002;
Cheng and Cheng, 2005; Cruse and Aithal, 1991, 1993; Liu and
Rudolphi, 1999). In this study, we focus on the nearly singular
integrals.

Near singularities are involved in many BEM analyses of engi-
neering problems, such as problems on thin shell-like structures
(Krishnasamy et al., 1994; Liu, 1998), the crack problems
(Dirgantara and Aliabadi, 2000; Sladek et al., 1993a,b), the contact
problems (Aliabadi and Martin, 2000), as well as the sensitivity
problems (Zhang et al., 1999). Accurate and efficient evaluation
of nearly singular integrals with various kernel functions of the
type O(1=rv) is crucial for the successful implementation of the
boundary type numerical methods based on boundary integral
equations (BIEs), such as the boundary element method (BEM),
the boundary face method (BFM) (Zhang et al., 2009a). A near
singularity arises when a source point is close to but not on the
integration elements. Although those integrals are actually regu-
lar in nature, they cannot be evaluated accurately by the standard
Gaussian quadrature. This is because, the denominator r, the dis-
tance between the source and the field point, is close to zero but
not zero. The difficulty encountered in the numerical evaluation

mainly results from the fact that the integrands of nearly singular
integrals vary drastically with respect to the distance r. Various
numerical techniques have been developed to remove the near
singularities, such as Taylor expansion algorithm (Mi and
Aliabadi, 1996), global regularization (Sladek et al., 1993a,b; Liu
and Rudolphi, 1999), coordinate optimization transformation
(Sladek et al., 2000), semi-analytical or analytical integral formu-
las (Niu and Zhou, 2004; Niu et al., 2005; Zhou et al., 2007, 2008),
the sinh transformation (Johnston and Elliott, 2005; Johnston
et al., 2007; Gu et al., 2013), polynomial transformation (Tells,
1987), adaptive subdivision method (Gao and Davies, 2000;
Zhang et al., 2009a), distance transformation technique (Ma and
Kamiya, 2001, 2002; Qin et al., 2011), the PART method (Hayami
and Matsumoto, 1994; Hayami, 2005), and the exponential trans-
formation (Xie et al., 2011; Zhang et al., 2009b, 2010). Most of
them benefit from the strategies for computing singular integrals
(Sladek and Sladek, 1992; Sladek et al., 2001). Among those tech-
niques, the exponential transformation technique seems to be a
more promising method for nearly singular integrals. However,
the transformation is only limited to 2D boundary element and
the accuracy is sensitive to the position of the projection point.
In this paper, we develop the exponential transformation tech-
nique for the nearly singular integrals in 3D boundary element
method. Moreover, our method is less sensitive to the position
of the projection point.

In our method, firstly the conventional distance function is
reviewed. Then the conventional distance function is modified into
a new form. Based on the modified distance function, the
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exponential transformation (Xie et al., 2011; Zhang et al., 2009b,
2010) can be developed to 3D BEM in a new form. Moreover, to
perform integrations on irregular elements, the element subdivi-
sion technique considering both the shape of integration element
and positions of the project point is employed in combination with
the improved transformation. Although the element subdivision
technique is used, the computational cost is reduced dramatically
compared with the conventional element subdivision techniques
(Gao and Davies, 2000; Zhang et al., 2009a). Furthermore, in order
to get subtriangles or subquadrangles of fine shapes, another near-
est point is introduced instead of the projection point when the
projection point is located outside the integration element. With
our method, the boundary nearly singular integrals of regular or
irregular elements can be accurately and effectively calculated.
Results demonstrate the accuracy and efficiency of our method.
Moreover, our method is less sensitive to the projection of the pro-
ject point than the conventional exponential transformation
method.

This paper is organized as follows. The general form of nearly
singular integrals is described in Section 2. Section 3 briefly re-
views the distance function in the polar coordinate system and
then the distance function is constructed in the polar coordinate
system in a new form. In Section 4, the transformations for nearly
singular integrals are presented and the element subdivision tech-
nique is introduced. Numerical examples are given in Section 5.
The paper ends with conclusions in Section 6.

2. General descriptions

In this section, we will give a general form of the nearly singular
integrals over 3D boundary elements. First we consider the bound-
ary integral equations for 3D elasticity problems. The well-known
self-regular BIE for elasticity problems in 3-D is

0 ¼
Z

C
ðujðsÞ � ujðyÞÞTijðs; yÞdC�

Z
C

tjðsÞUijðs; yÞdC ð1Þ

where s and y represent the field point and the source point in the
BEM, with components si and yi, i = 1, 2, 3, respectively and
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Eq. (1) is discretized on the boundary C by boundary elements
Ceðe ¼ 1 � NÞ defined by interpolation functions. The integral ker-
nels of Eq. (1) become nearly singular when the distance between
the source point and integration element is very small compared to
the size of integration element. And the integrals in Eq. (1) become
nearly singular with different orders, namely, Uijðs; yÞ with near
weak singularity, and Tijðs; yÞ with near strong singularity. In this
paper, we develop the exponential transformation method for var-
ious boundary integrals with near singularities of different orders.
The new method is detailed in following sections. For the sake of
clarity and brevity, we take the following integral as a general form
to discuss:

I ¼
Z

S

f ðx; yÞ
rl

dS; l ¼ 1;2; 3 r ¼ kx� yk2 ð2Þ

where f is a smooth function, x and y represent the field point and
the source point in BEM, with components xi and yi, respectively. S
represents the boundary element. We assume that the source point
is close to S, but not on it.

3. Construction of new distance function

3.1. Conventional distance function in polar coordinate system

In this section, we will briefly review the distance function (Ma
and Kamiya, 2001, 2002; Qin et al., 2011).

As shown in Fig. 1, employing the first-order Taylor expansion
in the neighborhood of the projection point, we have:

xk � yk ¼ xk � xc
k þ xc

k � yk

¼ @xk
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����
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ðt2 � c2Þ þ r0nkðc1; c2Þ þ Oðq2Þ
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where ðc1; c2Þ are the coordinates of the projection point in the local

system, ðt1; t2Þ, q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
, and r0 ¼ kxc � yk which

is the minimum distance from the source point to the element in
most cases. nk represents the component of the unit outward direc-
tion to the surface boundary and
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The distance function is expressed as follows:
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Using Eqs. (5a) and (5b), Eq. (2) can be written as:
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where xðhÞ ¼ r0
AðhÞ, AðhÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AkðhÞAkðhÞ

p
, and gðq; hÞ is a smooth

function.

3.2. Improved distance function in polar coordinate

The conventional distance function has been reviewed in Sec-
tion 3.1. However, as illustrated in Fig. 2, if the projection point
is not the ideal point, the line with end points xc and y is not per-
pendicular to the tangential plane through xc.

Using Eqs. (3) and (5a), the real distance between the source
point and the field points can be written as:
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2a
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where a ¼ A2
kðhÞ > 0, b ¼ 2dkAkðhÞ; r2

0 ¼ jdj
2

The following distance function can be given as:
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Fig. 1. The minimum distance r0, from the source point to the projection point xc

the 3D surface element.
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