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a b s t r a c t

Thermomagnetoelectroelastic crack branching of magnetoelectro thermoelastic materials is theoretically
investigated based on Stroh formalism and continuous distribution of dislocation approach. The crack
face boundary condition is assumed to be fully thermally, electrically and magnetically impermeable.
Explicit Green’s functions for the interaction of a crack and a thermomagnetoelectroelastic dislocation
(i.e., a thermal dislocation, a mechanical dislocation, an electric dipole and a magnetic dipole located
at a same point) are presented. The problem is reduced to two sets of coupled singular integral equations
with the thermal dislocation and magnetoelectroelastic dislocation densities along the branched crack
line as the unknown variables. As a result, the formulations for the stress, electric displacement and mag-
netic induction intensity factors and energy release rate at the branched crack tip are expressed in terms
of the dislocation density functions and the branch angle. Numerical results are presented to study the
effect of applied thermal flux, electric field and magnetic field on the crack propagation path by using
the maximum energy release rate criterion.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, materials with coupling magnetic, electric and
mechanical effect have been found increasingly applications in
modern industries such as multilayer actuators, sensors, control-
ling devices, smart and intelligent structures, and biological de-
vices. These materials are often made in the form of composites
with a piezoelectric inclusions and piezomagnetic matrix phase
(Huang and Kuo, 1997; Kirchner and Alshits, 1996; Nan, 1994).
Most materials with magnetoelectric coupling are ceramics. They
can fail prematurely due to defects such as cracks arising in the
manufacturing process when subjected to thermal, mechanical,
electric and magnetic loads. There has been tremendous interest
in studying the fracture and failure behaviors of magnetoelectric
materials since the importance of the reliability of these devices.
Green’s functions for an infinite two-dimensional anisotropic mag-
netoelectroelastic medium containing an elliptical cavity were
obtained by Liu et al. (2001). The magnetoelectroelastic problem
of a crack in a medium possessing coupled piezoelectric, piezo-
magnetic and magnetoelectric effects was considered by Wang
and Mai (2003). Green’s functions for a defect in an infinite
magnetoelectroelatic solid induced by the thermal analog of a line

temperature discontinuity and a line heat source were derived in
closed form by Qin (2005). The different electromagnetic boundary
conditions on the crack-faces in magnetoelectroelastic materials
were discussed by Wang and Mai (2007). The problem of collinear
unequal crack series under mode I magneto-electro-mechanical
loadings was studied by Li and Lee (2010).

On the other hand, the phenomenon of crack branching is an
important aspect of piezoelectric, piezomagnetic and magnetoelec-
tric materials fracture mechanics. The direction of crack branching
can be one of the major factors in determining the residual
strength of the structural components. Park and Sun (1995) re-
ported that the crack propagation deviated from its original direc-
tion under the combined mechanical and electrical load in their
three-point bending test with an unsymmetrical crack in a PZT-4
specimen. The problems of crack branching in a piezoelectric solid
were investigated by continuous distribution of edge dislocation
and electric dipole method by Zhu and Yang (1999), Xu and
Rajapakse (2000). The problem of crack deflection in bimaterial
systems with various materials combinations was solved by Qin
and Zhang (2000). The effect of a transverse electric field on crack
kinking in ferroelectric ceramics subjected to purely electrical load
was investigated by Jeong et al. (2008). Tian and Rajapakse (2008)
presented a theoretical model to determine the fracture parame-
ters of a finite impermeable crack with one or more branches in
a magnetoelectroelstic plane subjected to the remote mechanical,
electrical and magnetic loading.
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However, in contrast to the thermoelastic, thermopieozelectric
and thermomagnetoelectroelastic straight crack problem, very
few papers can be found on the thermoelastic, thermopiezoelectric
and thermomagnetoelectroelastic crack branching problems due to
the complicated coupling or interaction between thermal effects
and magnetoelectroelastic loading. A thermoelastic problem for
an infinite plate with a kinked crack was analyzed by Hasebe
et al. (1986). The two-dimensional problem of curvilinear cracks
lying along the interface between dissimilar materials under re-
mote heat flux was considered by Chao and Shen (1993). Crack
growth prediction of an inclined crack in a half-plane thermopiezo-
electric solid was studied by Qin and Mai (1997). Solutions to the
thermoelastic crack branching in general anisotropic media and
the thermoelastic interface crack branching in dissimilar aniso-
tropic bi-materials media were presented by Li and Kardomateas
(2005, 2006). Zhang and Wang (2013) studied thermopiezoelectric
crack branching of piezoelectric materials based on extended Stroh
formalism (Stroh, 1958) and continuous distribution of dislocation
approach. In the work of Qin and Mai (1997), the minimum strain
energy density criterion was used, i.e., fracture initiates from an
interior element located at a finite distance r0 from the crack front.
The direction of crack propagation is determined by the theory of
maximum energy release rate criterion in our previous work
(Zhang and Wang, 2013) and this paper, that is, the branching an-
gle at which makes the energy release rate attain its maximum
value.

The purpose of this paper is to present a theoretical model for
the evaluation of fracture mechanics parameters of a branched
crack in a thermomagnetoelectroelastic medium subjected to re-
mote thermal, mechanical, electric and magnetic loading. The plan
of the paper is as follows. In Section 2 we outline the basic theory
of extended Stroh formalism. In Section 3 a closed form solution is
obtained for the interaction between a crack and a thermomagne-
toelectroelastic dislocation. In Sections 4 and 5, the branched por-
tion of the crack is modeled by a continuous distribution of
thermal dislocation and magnetoelectroelastic dislocation tech-
nique, leading to two sets of coupled singular integral equations
in terms of unknown dislocation density functions. Some numeri-
cal results are presented in Section 6, and concluding remarks are
made in Section 7.

2. The Stroh formalism

Consider a linear magnetoelectroelastic material in which all
fields are assumed to depend only on the in-plane coordinates x1

and x2. The shorthand notation developed by Barnett and Lothe
(1975) based upon Stroh formalism (Stroh, 1958) is adopted in this
paper. Lower case Latin subscripts always range from 1 to 3, upper
case Latin subscripts will range from 1 to 5, and the summation
convention is used for repeating subscripts unless otherwise indi-
cated. In the stationary case when no free electric charge, electric
current, body force or heat source exists, the basic equations for
thermomagnetoelectroelastic materials can be written as (Mindlin,
1974; Qin, 2005)

hi;i ¼ 0; PiJ;i ¼ 0 ð1Þ

together with

hi ¼ �kijT ;j; PiJ ¼ EiJKmuk;m � viJT ð2Þ

in which

PiJ ¼
rij;

Di;

Bi;

8><
>:

J 6 3
J ¼ 4
J ¼ 5

ð3Þ

uK ¼
uk;

/;

u;

8><
>:

K 6 3
K ¼ 4
K ¼ 5

ð4Þ

viJ ¼
bij;

ci;

ti;

K 6 3
K ¼ 4
K ¼ 5

8><
>: ð5Þ

EiJKm ¼

cijkm; J; K 6 3
emij; J 6 3; K ¼ 4
hmij; J 6 3; K ¼ 5
eikm; J ¼ 4; K 6 3
�jim; J ¼ 4; K ¼ 4
�aim; J ¼ 4; K ¼ 5
hikm; J ¼ 5; K 6 3
�aim; J ¼ 5; K ¼ 4
�lim; J ¼ 5; K ¼ 5

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð6Þ

where T and hi are temperature change and thermal flux, rij, Di and
Bi are elastic stress tensor, electric displacement vector and mag-
netic induction vector; ui, / and u are elastic displacement vector,
electric potential and magnetic potential; bij, ci and ti are thermal-
stress constants, pyroelectric coefficients and pyromagnetic coeffi-
cients; kij is the thermal conductivity; cijkm, eijk, hijk, aij, jij and lij

are the elastic moduli, piezoelectric coefficients, piezomagnetic
coefficients, magnetoelectric coefficients, dielectric constants and
magnetic permeability, respectively. The general solution to the
Eq. (1) can be written as (Qin, 2005)

T ¼ g0ðztÞ þ g0ðztÞ
u ¼ AfðzÞqþ cgðztÞ þ AfðzÞqþ cgðztÞ

ð7Þ

with A ¼ ½A1; A2; A3; A4;A5�, fðzÞ ¼ diag½f ðz1Þ; f ðz2Þ; f ðz3Þ; f ðz4Þ;
f ðz5Þ�, q ¼ ½q1; q2; q3; q4; q5�

T , zt ¼ x1 þ p�x2, zi ¼ x1 þ pix2, in
which the prime denotes differentiation with the argument, the
overbars denote complex conjugation, q is a constant vector to be
determined by the boundary conditions, g and f are arbitrary ana-
lytic function, p�, pi, A and c are constants determined by

k11 þ 2k12p� þ k22p2
� ¼ 0

Q þ pi R þ RT
� �

þ p2
i T

h i
Ai ¼ 0

Q þ p� R þ RT
� �

þ p2
�T

h i
c ¼ v1 þ p�v2

ð8Þ

in which superscript ‘‘T’’ denotes the transpose, vi, Q , R, and T are
defined by

vi ¼ bi1; bi2; bi3; ci; ti½ �T ; Q IK ¼ E1IK1; RIK ¼ E1IK2;

TIK ¼ E2IK2 ð9Þ

The thermal flux, h, and stress, electric displacement and mag-
netic induction (SEDMI), PiJ , can be obtained from Eq. (2) as

hi ¼ �ðki1 þ p�ki2Þg00ðztÞ � ðki1 þ p�ki2Þg00ðztÞ
P1J ¼ �UJ;2; P2J ¼ UJ;1

ð10Þ

where U is the SEDMI function give as

U ¼ BfðzÞqþ dgðztÞ þ BfðzÞqþ dgðztÞ ð11Þ

with

B ¼ RT Aþ TAP
P ¼ diag½p1; p2; p3; p4; p5�

d ¼ RT þ p�T
� �

c� v2

ð12Þ
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