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a b s t r a c t

In polycrystals, the discontinuity of lattice rotation occurring across symmetric tilt boundaries is accom-
modated by the periodic arrangement of atoms in structural units. A crossover between this atomistic
description and a continuous representation of tilt boundaries is carried out by designing periodic arrays
of appropriately chosen smooth disclination dipoles. A comprehensive description of the boundary struc-
ture in terms of elastic strain, curvature and energy fields is then derived from a continuous theory of
dislocation and disclination density fields, by allowing the initial distributions to relax in their own
stress/couple stress fields. The resulting fields are obtained at nanoscale from finite element approxima-
tions of the theory. They compare remarkably well with predictions from molecular statics and experi-
mental data. Beyond this description of grain boundaries as continua, the theory naturally provides a
basis for coarse-grained spatio-temporal continuous descriptions of polycrystals.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In crystalline solids such as ice, rocks and metallic materials,
grain boundaries are thin sheets of material where the lattice
rotates from a crystal orientation to the next one within a few
nanometers. Because they treat these layers as infinitely thin inter-
faces, polycrystalline simulations based on conventional contin-
uum mechanics fail to account for their structure and energy.
Conversely, atomistic simulations provide detailed descriptions of
the structure of grain boundaries and good estimates of their
energy, but coarse-graining to polycrystalline samples remains
elusive. In this paper, our intent is to show that a nonlocal contin-
uum mechanics model based on crystal defect fields (disclinations
and dislocations) defined at interatomic scale can consistently ac-
count for the grain boundary structure and energy, while retaining
the potential for being an effective tool in designing scale transi-
tions from atomistic configurations to polycrystals.

Our modeling paradigm, motivated by the remarkable achieve-
ments of the Peierls model in elucidating basic dislocation physics
(Peierls, 1940), is to account for lattice incompatibility by focusing
on densities of crystal defects (dislocations and disclinations)
defined continuously at interatomic scale, rather than the atoms
themselves. Several attempts in this direction have already been
developed, though apparently not implemented numerically (see
the review paper McDowell (2008) and references therein). By
similarly specifying continuously the displacement and rotation
vector fields below interatomic distances, the theory considers

the material as capable of transmitting stresses and couple stresses
at this scale. Because it accounts for the lattice incompatibility due
to crystal defects, the theory is able to describe the associated
internal stress and couple-stress fields. As recently shown by
Upadhyay et al. (2013), non-locality of the elastic response and
length scales characteristic of this behavior hinge upon the break-
ing of lattice symmetry occurring in the defected areas of the lat-
tice. Plasticity derives from the transport of dislocation and
disclination densities through the lattice. The transport equations
supply an undisputable kinematic structure for the spatio-tempo-
ral dynamics of the crystal defect densities. Using thermodynami-
cal guidance, appropriate constitutive relationships for plasticity
can be provided in terms of driving forces vs. dislocation/disclina-
tion velocities to substantiate this dynamical structure. Thus com-
pleted, the theory allows formulating a boundary value problem
for the defects densities and displacement fields, with standard
boundary conditions on the displacement and traction vector fields
(Fressengeas et al., 2011). In the present work, approximate solu-
tions to this problem in small bi-crystalline samples are generated
by using finite element methods similar to those previously em-
ployed in the pure dislocation dynamics case (Roy and Acharya,
2005; Varadhan et al., 2006).

In order to show the ability of the above framework at recover-
ing grain boundary structure and energy, symmetrical tilt bound-
aries are chosen for simplicity. The paper then proceeds in two
steps. Firstly, disclination density distributions are arbitrarily
chosen to model the boundaries in a manner such that the elastic
curvature incompatibility is similar to that obtained from their
atomistic representation. Taupin et al. (2013) suggested that
periodic arrays of smooth wedge disclination dipoles defined at
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interatomic scale can be adequate counterparts to the structural
units composing the symmetrical tilt boundaries in these models.
This method will be followed in the present work. Secondly, the as-
sumed defect distributions are allowed to relax and re-arrange by
transport in their own self-stress and couple stress fields, until
their elastic energy stabilizes and a self-organized structure
emerges. The non-locality of the elastic response in the core region
appears to be essential in this process. Thus, it is thoroughly ana-
lyzed in this paper, within the constitutive framework recently
set out in Upadhyay et al. (2013), but in a bi-dimensional setting
adequate for the study of symmetrical tilt boundaries.

The paper is organized as follows. Notations are settled in
Section 2. The elasto-plastic theory of defects introduced in
Fressengeas et al. (2011) and a bi-dimensional model for symmet-
rical tilt boundaries are briefly recalled in Section 3. The nonlocal
elastic constitutive laws valid in the core of the boundaries are
derived in Section 4. The construction of tilt boundaries with
wedge disclination densities and comparison of the results with
molecular statics predictions and experiments are shown in
Section 5. Section 6 discusses the continuous nature of the present
results, and provides hints on how coarse-graining to polycrystal-
line samples of the present nanoscale theory could be constructed.
Conclusions follow.

2. Notations

A bold symbol denotes a tensor. When there may be ambiguity,
an arrow is superposed to represent a vector: ~V. The symmetric
part of tensor A is denoted Asym. Its skew-symmetric part is Askew

and its deviatoric part is Adev . The tensor A � B, with rectangular
Cartesian components AikBkj, results from the dot product of ten-
sors A and B, and A� B is their tensorial product, with components
AijBkl. A: represents the trace inner product of the two second order
tensors A : B ¼ AijBij, in rectangular Cartesian components, or the
product of a higher order tensor with a second order tensor, e.g.,
ðA : BÞij ¼ AijklBkl. The cross product of a second-order tensor A
and a vector V, the div and curl operations for second-order ten-
sors are defined row by row, in analogy with the vectorial case.
For any base vector ei of the reference frame:

ðA� VÞt � ei ¼ ðAt � eiÞ � V; ð1Þ
ðdiv AÞt � ei ¼ divðAt � eiÞ; ð2Þ
ðcurl AÞt � ei ¼ curlðAt � eiÞ: ð3Þ

In rectangular Cartesian components:

ðA� VÞij ¼ ejklAikVl; ð4Þ
ðdiv AÞi ¼ Aij;j; ð5Þ
ðcurl AÞij ¼ ejklAil;k: ð6Þ

where ejkl is a component of the third-order alternating Levi–Civita
tensor X. A vector ~A is associated with tensor A by using its trace
inner product with tensor X:

ð~AÞk ¼ �
1
2
ðA : XÞk ¼ �

1
2

eijkAij: ð7Þ

In the component representation, the spatial derivative with respect
to a Cartesian coordinate is indicated by a comma followed by the
component index. A superposed dot represents a material time
derivative.

3. Continuum mechanics of crystal defects

In a continuum mechanics framework, the material displace-
ment field vector u is defined continuously in the absence of

fracture, at any point of an elasto-plastic body, possibly below
interatomic distances. The total distortion tensor, defined as the
gradient of the displacement U ¼ grad u, is a curl-free compatible
tensor:

curl U ¼ 0: ð8Þ

This equation is sufficient to assure the existence of a single-valued
continuous displacement field u, solution to the equation
U ¼ grad u, up to a constant translation. In a small deformation set-
ting, the strain tensor � is the symmetric part of the distortion U,
the rotation tensor x is its skew-symmetric part and the associated
rotation vector ~x reads:

~x ¼ �1
2
x : X ¼ 1

2
curlu: ð9Þ

Using � and ~x, Eq. (8) becomes:

curl �þ divð~xÞI� gradt~x ¼ 0; ð10Þ

where I is the identity tensor. The curvature tensor j ¼ grad~x is
also a compatible curl-free tensor. It is decomposed into an elastic
component, je, and a plastic component, jp, such that:

je ¼ grad ~xe; ð11Þ
jp ¼ grad ~xp; ð12Þ
j ¼ grad~x ¼ je þ jp: ð13Þ

As remarked by deWit (1970), (je;jp) may not be compatible ten-
sors, if the possibility of multi-valued elastic and plastic rotations
~xe and ~xp, i:e:, a discontinuity of the elastic and plastic rotations

over some surface, is acknowledged. In such cases, a non-zero
tensor h such that

h ¼ �curljp ¼ curlje ð14Þ

can be defined. h is the disclination density tensor. It is a continuous
tensorial rendition of the elastic/plastic rotation discontinuity. The
latter is also measured by the Frank vector X; i:e:, the closure defect
of a circuit C, obtained by integrating the incompatible elastic
curvatures along C

X ¼
Z

C
je � dr ¼

Z
S

h � ndS; ð15Þ

where S is the surface of unit normal n delimited by the circuit C. As
the rotation vectors ð ~xe; ~xpÞ are multi-valued, the elastic and
plastic distortion tensors Ue and Up are undefined. Substituting
the elastic and plastic curvatures (je;jp) for (grad ~xe;grad ~xp)
allows splitting Eq. (10) into elastic and plastic components

curl�e ¼ þaþ jt
e � trðjeÞI; ð16Þ

curl�p ¼ �aþ jt
p � trðjpÞI: ð17Þ

Eqs. (16) and (17) relate the elastic/plastic strains associated with
the presence of Nye’s dislocation density tensor a in the concurrent
presence of incompatible elastic/plastic curvatures. A point-wise
measure of the translation discontinuity due to the presence of dis-
locations is the Burgers vector. It contains a possible contribution
from disclinations and reads:

b ¼
Z

C
ð�e � ðjt

e � rÞtÞ � dr ¼
Z

S
ða� ðh� rÞtÞ � ndS ð18Þ

Note that Eqs. (14) and (16) may be utilized to estimate the
disclination and Nye’s dislocation density tensors from orientation
maps provided by EBSD experiments, respectively (Beausir and
Fressengeas, 2013). In the absence of body forces, the momentum
and moment of momentum equations are:

divT ¼ 0; ð19Þ
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