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a b s t r a c t

We study the coupled thermo-mechanical problem that is obtained by combining generalized standard
materials with Fourier’s law for heat conduction. The analysis is conducted in the framework of non-
smooth mechanics in order to account for possible constraints on the state variables. This allows models
of damage and phase-transformation to be included in the analysis. In view of performing numerical sim-
ulations, an incremental thermo-mechanical problem and corresponding variational principles are intro-
duced. Conditions for existence of solutions to the incremental problem are discussed and compared with
the isothermal case. The numerical implementation of the proposed approach is studied in detail. In par-
ticular, it is shown that the incremental thermo-mechanical problem can be recast as a concave maximi-
zation problem and ultimately amounts to solve a sequence of linear thermal problems and purely
mechanical (i.e. at a prescribed temperature field) problems. Therefore, using the proposed approach,
thermo-mechanical coupling can be implemented with low additional complexity compared to the iso-
thermal case, while still relying on a sound mathematical framework. As an application, thermo-mechan-
ical coupling in shape memory alloys is studied. The influence of the loading strain-rate on the phase
transformation and on the overall stress–strain response is investigated, as well as the influence of the
thermal boundary conditions. The numerical results obtained by the proposed approach are compared
with numerical and experimental results from the literature.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

This paper focuses on coupled thermo-mechanical evolutions of
dissipative solids, in the geometrically linear (small strains) setting.
The framework of generalized standard materials in non-smooth
mechanics is considered (Halphen and Nguyen, 1975; Moreau
and Panagiotopoulos, 1988; Frémond, 2002). In that framework,
the local state of the material is described by the strain e, the tem-
perature h, and an internal variable a. The constitutive laws are
determined from the Helmholtz free energy w and a convex dissipa-
tion potential U. In its original form (Halphen and Nguyen, 1975),
that framework covers a wide range of elasto–plastic models,
including limited and nonlinear hardening. Its extension to non-
smooth mechanics has been extensively studied by Frémond
(2002) and allows constraints on the internal variable a to be taken
into account in a rigorous fashion. That feature is crucial for the
modelling of such phenomena as damage or phase-transformation,
as the internal variable in such cases is typically bounded. The
thermodynamic analysis of the media considered is presented in
Section 2, leading to a boundary value problem for the mechanical

and thermal fields. As pointed out by Yang et al. (2006), the time-
discretization of the thermo-mechanical evolution problem is a
sensitive issue because of the coupling between mechanical and
thermal equations. For instance, the Euler implicit scheme leads
to an incremental thermo-mechanical problem for which existence
of solutions cannot generally be ensured. This is in contrast with the
isothermal case, for which the Euler implicit scheme provides a
well-posed incremental problem under standard assumptions of
convexity on the functions w and U.

One objective of this paper is to propose a sound time-discret-
ization scheme for coupled thermo-mechanical problems, retain-
ing some essential features displayed by the Euler scheme in the
isothermal case (most notably the consistency with the rate prob-
lem and the existence of solutions). A central idea is the use of a
variational formulation for the incremental problem. Incremental
variational principles for dissipative solids have been the focus of
a lot of attention in recent years, offering new perspectives in var-
ious topics such as finite-strains elasto-viscoplasticity (Ortiz and
Stainier, 1999), homogenization (Miehe, 2002; Lahellec and
Suquet, 2007), formation and stability of microstructures (Ortiz
and Repetto, 1999; Miehe et al., 2004). Incremental variational
principles for coupled thermo-mechanical problems have been
proposed by Yang et al. (2006) in the case where the heat flux q

0020-7683/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.ijsolstr.2013.08.013

⇑ Corresponding author. Tel.: +33 1 6415 3746; fax: +33 1 6415 3741.
E-mail address: michael.peigney@polytechnique.org (M. Peigney).

International Journal of Solids and Structures 50 (2013) 4043–4054

Contents lists available at ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier .com/locate / i jsols t r

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2013.08.013&domain=pdf
http://dx.doi.org/10.1016/j.ijsolstr.2013.08.013
mailto:michael.peigney@polytechnique.org
http://dx.doi.org/10.1016/j.ijsolstr.2013.08.013
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr


derives from a potential v in ðrhÞ=h, i.e. when the heat conduction
law takes the form q ¼ �v0ððrhÞ=hÞ. In this paper, we stick with the
standard Fourier’s law of heat conduction q ¼ �Krh, which does
not fall in the format considered by Yang et al. (2006).

In Section 3 we introduce an incremental problem for the class
of coupled thermo-mechanical problems considered, along with a
corresponding variational formulation. The variational formulation
of the incremental thermo-mechanical problem serves two pur-
poses. First, it allows the existence of solutions to be studied, as
discussed in Section 3. Second, the variational formulation leads
to a convenient and efficient way of solving the incremental ther-
mo-mechanical problem. The latter can be indeed be recast as a
concave maximization problem, for which well-known algorithms
are available. As detailed in Section 4, an advantage of that ap-
proach is that the solution of the thermo-mechanical problem
can be obtained by solving a sequence of linear thermal problems
and purely mechanical (i.e. at prescribed temperature) problems.
This calls for an easy implementation in an existing finite-element
code. A crucial point in the analysis lies in the introduction of an
auxiliary linear problem, akin to the adjoint state used in optimal
control problems (Lions, 1968).

As an application, the proposed method is used in Section 5 to
study thermo-mechanical coupling in shape-memory alloys. The
significant role of thermal effects in shape-memory alloys has
notably been put forward by Peyroux et al. (1998) and Chrysochoos
et al. (2003). The solid/solid phase transformation that occurs in
those materials is known to produce significant amounts of heat,
associated both with recoverable latent heat effects and irrevers-
ible frictional contributions. Depending on the rate of loading
and on the thermal exchange conditions, the heat produced by
the phase transformation may not have time to diffuse in the body
and the temperature field may become inhomogeneous. In such
conditions, the overall stress–strain response becomes signifi-
cantly different from its isothermal counterpart, and it is manda-
tory to take the thermo-mechanical coupling into account.
Therefore, shape-memory alloys offer a particularly relevant appli-
cation of the general methods presented in this paper. In Section 5,
the influence of thermal effects on the phase-transformation and
on the overall stress–strain curve is investigated in detail.

2. Thermo-mechanical evolutions of continuous media

2.1. Thermodynamic principles

Consider the evolution (on a time interval ½0; T�) of a continuous
medium occupying a domain X in the reference configuration. We
restrict our attention to the geometrically linear setting, defining
the strain e as e ¼ 1=2ðruþrT uÞ where u is the displacement.
The first principle of thermodynamics givesZ t0

t

_Edsþ
Z t0

t

_Kds ¼
Z t0

t
Pdsþ

Z t0

t
Q�dt for all 0 6 t 6 t0 6 T: ð1Þ

In Eq. (1), K and E are respectively the kinetic and the internal en-
ergy of the system. The internal energy E can be written in the form
E ¼

R
X edx where e is the internal energy density. In the right-hand

side of (1), P denotes the power of external loads, and Q�is the rate
of heat received by the system. The upper dot in (1) denotes left-
time derivative.1 The principle of virtual power gives the relation

_K ¼ P �
Z

X
r : _edx ð2Þ

where r is the stress. Expressing Q�as

�Q ¼ �
Z
@X

q:ndxþ
Z

X
rdx ð3Þ

where q is the heat flux and r a heat source, the relation (1) can be
rewritten asZ t0

t

Z
X
ð _e� r : _eþ div q� rÞdxds ¼ 0 for all 0 6 t 6 t0 6 T: ð4Þ

The relation (4) also holds when replacing X with an arbitrary sub-
domain X0 � X. Therefore, we obtain the local equation

_e� r : _eþ div q� r ¼ 0 a:e: in X� ½0; T� ð5Þ

where the abbreviation ‘a.e’ stands for ‘almost everywhere’. The
second principle of thermodynamics gives

Z t0

t

Z
X

_sdxds P
Z t0

t

Z
X

r
h
� div

q
h

dxds

where s is the entropy density and h is the local temperature. Using
a similar reasoning as above, we obtain the relation

h_s� r þ div q� q:
rh
h

P 0 a:e: in X� ½0; T�:

Making the classical assumption of separation between the intrinsic
dissipation h_s� r þ div q and the thermal dissipation �q:ðrhÞ=h, we
obtain the inequalities �q:ðrhÞ=h P 0 and

h_s� r þ div q P 0 a:e: in X� ½0; T�: ð6Þ

Eqs. (5),(6) can be rewritten in terms of the Helmholtz free energy
density w ¼ e� hs as

_wþ h_sþ s _h ¼ r : _eþ r � div q a:e: in X� ½0; T�; ð7Þ
r : _e� s _h� _w P 0 a:e: in X� ½0; T�: ð8Þ

2.2. Mechanical constitutive laws

In the framework of standard generalized materials (Halphen
and Nguyen, 1975), the local state of the material is described
by the strain e, the temperature h, and an internal variable a
living in a vectorial space denoted by A. The constitutive laws
are determined by the Helmholtz free energy wðe;a; hÞ and a
convex dissipation potential Uð _aÞ according to the following
relations:

r ¼ @w
@e

; ð9:1Þ

A ¼ � @w
@a

; ð9:2Þ

s ¼ � @w
@h

; ð9:3Þ

A 2 @Uð _aÞ; ð9:4Þ

where @ denotes the subdifferential operator. Recall (Brézis, 1972)
that the subdifferential @f of a function f : A # R is the multi-val-
ued mapping defined by

@f ðxÞ ¼ fs 2 Ajf ðyÞ � f ðxÞP s:ðy � xÞ 8y 2 Ag: ð10Þ

In the following, the dissipative behaviour is assumed to be rate-
independent. In such case, the dissipation potential U is positively
homogeneous of degree 1, i.e. satisfies

Uðk _aÞ ¼ kUð _aÞ for any k 2 Rþ and _a 2 A: ð11Þ

1 In non-smooth mechanics, left- and right-time derivative of physical quantities
may not be equal. In order to respect the principle of causality, the constitutive
relations need to be written in terms of left-time derivatives (see e.g. Frémond, 2002).
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