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a b s t r a c t

We analyse a problem of anti-plane shear in a bi-material plane containing a semi-infinite crack situated
on a soft imperfect interface. The plane also contains a small thin inclusion (for instance an ellipse with
high eccentricity) whose influence on the propagation of the main crack we investigate. An important
element of our approach is the derivation of a new weight function (a special solution to a homogeneous
boundary value problem) in the imperfect interface setting. The weight function is derived using Fourier
transform and Wiener–Hopf techniques and allows us to obtain an expression for an important constant
rð0Þ0 (which may be used in a fracture criterion) that describes the leading order of tractions near the crack
tip for the unperturbed problem. We present computations that demonstrate how rð0Þ0 varies depending
on the extent of interface imperfection and contrast in material stiffness. We then perform perturbation
analysis to derive an expression for the change in the leading order of tractions near the tip of the main
crack induced by the presence of the small defect, whose sign can be interpreted as the inclusion’s pres-
ence having an amplifying or shielding effect on the propagation of the main crack.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we present a method to evaluate important con-
stants which describe the behaviour of physical fields near crack
tips in a perturbed problem set in a domain containing an imper-
fect interface.

Imperfect interfaces account for the fact that the interface
between two materials is almost never sharp. Atkinson (1977)
accounted for this observation by placing a very thin strip of a
homogeneous material in the model between two larger bodies
with different elastic moduli to that of the strip. If the thin layer
is considered to be either much softer or stiffer than the main
bodies, its presence can be replaced in models by transmission
conditions, whose derivation can be found for example in Antipov
et al. (2001) for a soft imperfect interface, or Mishuris et al. (2006)
for a stiff imperfect interface. We shall consider only soft imperfect
interfaces in the present paper.

Klarbring and Movchan (1998) presented an asymptotic model
of adhesive joints in a layered structure. Mishuris (2001) found the
asymptotic behaviour of displacements and stresses in a vicinity of
the crack tip situated on a soft imperfect interface between two

different elastic materials, where the non-ideal interface is
replaced by non-ideal transmission conditions. For such a case,
the asymptotics are of a markedly different form to the perfect
interface case, in which components of stress exhibit a square root
singularity at the crack tip; such behaviour is not present for
imperfect interface cracks.

A key element of our approach will be the derivation of a new
weight function. The concept of weight functions was introduced
by Bueckner (1970). In the perfect interface setting these provide
weights for the loads applied to the crack surfaces such that their
weighted integrals over the crack surfaces provide the stress inten-
sity factors at a certain point. Vellender et al. (2011) modified the
weight function technique to yield similarly useful asymptotic
constants that characterise stress fields near crack tips along an
imperfect interface.

A survey of macro–microcrack interaction problems can be
found in Petrova et al. (2000). Of particular relevance is the recent
manuscript of Mishuris et al. (2011) which examines an analogous
problem to that presently considered with a perfect interface in
place of the imperfect interface. The approach in that paper utilises
the dipole matrix approach of Movchan and Movchan (1995) to
construct an asymptotic solution that takes into account the pres-
ence of a micro-defect such as a small inclusion. The present paper
seeks to adapt this approach to the imperfect interface setting.

0020-7683/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.ijsolstr.2013.08.023

⇑ Corresponding author. Tel.: +44 (0)1970622776.
E-mail address: asv2@aber.ac.uk (A. Vellender).

International Journal of Solids and Structures 50 (2013) 4098–4107

Contents lists available at ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier .com/locate / i jsolst r

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2013.08.023&domain=pdf
http://dx.doi.org/10.1016/j.ijsolstr.2013.08.023
mailto:asv2@aber.ac.uk
http://dx.doi.org/10.1016/j.ijsolstr.2013.08.023
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr


2. Structure and summary of main results

We adopt the following structure for the paper. We first
formulate the physical problem before giving the weight function
problem formulation. Fourier transform techniques allow us to ob-
tain a Wiener–Hopf type problem for the weight function, whose
kernel we factorise in a computationally convenient fashion. The
Wiener–Hopf equation is solved to yield expressions for the weight
function and comparisons are drawn between the perfect and
imperfect interface weight function problems.

We then use the reciprocal theorem (Betti formula) in the spirit
of Willis and Movchan (1995) to relate the sought physical solution
to the weight function. The presence of imperfect interface trans-
mission conditions alters properties of the functions in the Betti
identity and so different analysis is required. The application of
Betti’s identity enables us to find an expression for the leading or-
der of tractions rð0Þ0 near the crack tip in terms of the new weight
function and the imposed arbitrary tractions prescribed on the
faces of the crack:

rð0Þ0 ¼
1
2

ffiffiffiffiffiffi
l0

p

r Z 1

�1
nðsUtðnÞh�piðnÞ þ hUiðnÞs�ptðnÞÞdn: ð1Þ

Here, bars denote Fourier transform, l0 is a constant depending on
the material parameters and extent of interface imperfection, sUt

and hUi are respectively the jump and average of the weight func-
tion across the crack/interface line, and spt and hpi are the jump
and average of the tractions prescribed on the crack faces.

In Section 7, we perform perturbation analysis to determine the
impact on the tractions near the crack tip of the presence of a small
inclusion. The asymptotic solution is sought in the form

uðx; eÞ ¼ uð0ÞðxÞ þ eW ð1ÞðnÞ þ e2uð1ÞðxÞ þ oðe2Þ; e! 0; ð2Þ

where uð0Þ is the unperturbed physical displacement solution (the
solution with no inclusion present), eW ð1Þ is a boundary layer con-
centrated near the inclusion and e2uð1Þ is introduced to fulfil the ori-
ginal boundary conditions on the crack faces and along the
imperfect interface. This enables us to find the first order variation
in the crack tip tractions; we expand the constant r0 as

r0 ¼ rð0Þ0 þ e2Dr0 þ oðe2Þ; e! 0; ð3Þ

and use Betti identity arguments to derive an expression for Dr0

(see (138)). This is interpreted physically as the change in traction
near the crack tip induced by the inclusion’s presence; as such we
say that the sign of Dr0 for any given positioning and configuration
of the inclusion either shields or amplifies the propagation of the
main crack. Note that for the unpeturbed setup (with no inclusion
present) r0 ¼ rð0Þ0 and so we will naturally drop the superscript
when referring to the quantity corresponding to the unperturbed
problem.

We conclude the paper by presenting numerical results in Sec-
tion 9. In particular we show how rð0Þ0 varies depending on the ex-
tent of interface imperfection and choice of material contrast
parameter for different loadings. These computations are per-
formed for point loadings that are chosen to be illustrative of the
suitability of our method to asymmetric self-balanced loadings.
We further propose a method of comparing rð0Þ0 with stress inten-
sity factors from the analogous perfect interface problem and find
agreement as the extent of interface imperfection tends towards
zero. We also present computations that show the sign of Dr0

for varying location and orientation of the micro-defect.

3. Formulation of physical and weight function problems

3.1. Physical formulation

We consider an infinite two-phase plane with an imperfect
interface positioned along the positive x-axis. A semi-infinite crack
is placed occupying the line fðx; yÞ : x < 0; y ¼ 0g. We refer to the
half-planes above and below the crack and interface respectively
as Pð1Þ and Pð2Þ. The material occupying PðjÞ has shear modulus
lj and mass density qj for j ¼ 1;2. The anti-plane shear displace-
ment function u satisfies the Laplace equation

r2uðx; yÞ ¼ 0: ð4Þ

The plane also contains a micro-defect whose centre is at the point
Y; we will consider in particular elliptic inclusions although other
types of defect may be incorporated into the model provided a suit-
able dipole matrix can be obtained (see for example Mishuris et al.,
2011 in which micro-cracks and rigid line inclusions are consid-
ered). The defect ge has shear modulus lin, is placed at a distance
d from the crack tip, makes an angle / with the imperfect interface
and is oriented at an angle a to the horizontal as shown in Fig. 1. The
value of lin may be greater than or less than the value of lout (which
may be l1 or l2 depending where the defect is placed), and so both
stiff and soft defects can be considered.

We assume continuity of tractions across the crack and inter-
face, and introduce imperfect interface conditions ahead of the
crack:
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where the notation sut defines the jump in displacement across
x ¼ 0, i.e.

sutðxÞ ¼ u1ðx;0þÞ � u2ðx;0�Þ: ð7Þ

The parameter j > 0 describes the extent of imperfection of the
interface, with larger j corresponding to more imperfect interfaces.
We further impose prescribed tractions p� on the crack faces:

l1
@u
@y

����
y¼0þ

¼ pþðxÞ; l2
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¼ p�ðxÞ; x < 0: ð8Þ

These tractions are assumed to be self-balanced; that is

Fig. 1. Geometry for the physical setup. The crack tip is placed at the origin of an
infinite plane composed of materials with shear modulus lj occupying half-planes
PðjÞ above and below the crack and imperfect interface for j ¼ 1;2. The central point
Y of a micro-defect is situated at a distance d from the tip of the main crack.
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