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a b s t r a c t

The goal of this study is to understand the physical meaning and evaluate the intrinsic length scale
parameters, featured in the theories of gradient elasticity, by deploying the analytical treatment and
experimental measurements of the dispersion of elastic waves. The developments are focused on
examining the propagation of longitudinal waves in an aluminum rod with periodically varying cross-
section. First, the analytical solution for the dispersion relationship, based on the periodic cell analysis
of a bi-layered laminate and Bloch theorem, is compared to two competing models of gradient elasticity.
It is shown that the customary gradient elastic model with two length-scale parameters is able to capture
the dispersion accurately up to the beginning of the first band gap. On the other hand, the gradient elastic
model with an additional length scale (affiliated with the fourth-order time derivative in the field equa-
tion) is shown to capture not only the first dispersion branch before the band gap, but also the band gap
itself and the preponderance of the second branch. Closed form relations between the microstructure
parameters and the intrinsic length scales are obtained for both gradient elasticity models. By way of
the asymptotic treatment in the limit of a weak contrast between the laminae, a clear physical meaning
and scaling of the length-scale parameters was established in terms of: (i) the microstructure (given by
the size of the unit cell and the contrast between the laminae), and (ii) thus induced dispersion relation-
ship (characterized by the location and the width of the band gap). The analysis is verified through an
experimental observation of wave dispersion, and wave attenuation within the band gap. A comparison
between the analytical treatment, the gradient elastic model with three intrinsic length scales, and exper-
imental measurements demonstrates a good agreement over the range of frequencies considered.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that the classical approaches in continuum
mechanics have limitations in mimicking the behavior of materials
with microstructure. For instance, the conventional theory of linear
elasticity cannot capture the dispersion characteristics of body
waves propagating through a material that appears to be homoge-
neous at the meso scale. This and other limitations provide a moti-
vation towards developing enriched continuum models that are
able to capture the size effects by introducing intrinsic length
scales synthesizing the key features of the sub-scale material struc-
ture. In the context of linear elasticity, the so-called gradient elas-
ticity models have been considered for almost half a century. A
brief survey of the theory of gradient elasticity and its applications
are outlined in the sequel; for a comprehensive overview of the
available formulations, in terms of both static and dynamic prob-
lems, the reader is referred to Askes and Aifantis (2011).

The general theory of gradient elasticity was established in the
1960s by Toupin (1962, 1964) and Mindlin (1964). However, the
problem with applying the general theory resides in a large
number of intrinsic parameters, which makes the experimental
measurements thereof extremely difficult. For this reason, a multi-
tude of reduced models with a manageable number of length-scale
parameters have been proposed. For instance, static theories of
gradient elasticity with a single length-scale parameter are typi-
cally used to deal with the stress singularities near the crack tip
(Aifantis, 1992; Gourgiotis and Georgiadis, 2009). Similar ap-
proaches aiming to mitigate the singularity at the dislocation core
can be found for example in Gutkin and Aifantis (1999). Another
area where the models of gradient elasticity are found to be useful
is the prediction of the wave dispersion characteristics in heteroge-
neous or discrete systems, see e.g. (Mindlin, 1964; Muhlhaus and
Oka, 1996; Gonella et al., 2011). A variety of dynamic models, that
account for higher-order inertial terms and thus allow for a more
detailed description of the wave dispersion, have been considered
in Metrikine and Askes (2002), Askes and Metrikine (2002) and
Askes and Aifantis (2009). An in-depth discussion of the dispersion
phenomena brought about by the models of gradient elasticity can
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be found in Papargyri-Beskou et al. (2009) and Fafalis et al. (2012).
Many such models, however, are found to be non-causal in the
context of wave propagation; to deal with the causality issue,
one option is to include the fourth-order time derivative (and affil-
iated length-scale parameter) in the formulation (Metrikine, 2006).
As shown in Pichugin et al. (2008), such consideration of the
fourth-order time derivative also caters for an elevated asymptotic
accuracy of the models of gradient elasticity within the framework
of discrete models. A detailed comparison between the dispersive
characteristics of various simplified models of gradient elasticity
can be found in Askes et al. (2008).

One of the biggest challenges in dealing with the theories of
gradient elasticity is a physical interpretation of the featured
length-scale parameters in terms of given microstructure (Askes
and Aifantis, 2011). When tackling the materials with randomly
distributed heterogeneities, a numerical homogenization over
the representative volume element (RVE) is typically utilized
(Kouznetsova et al., 2002; Kouznetsova et al., 2004; Gitman et al.,
2007). In this situation, the parameters of gradient elasticity are re-
lated to the size of the RVE, although such computational platform
brings little to no physical clarity when dealing with multiple
length scales. Another possibility is to derive the latter from the
expansion of a discrete model (Metrikine and Askes, 2002;
Metrikine, 2006), described as a specific arrangement of masses
and springs. One drawback of this approach, however, is the lack
of a precise relationship between the discrete model and the struc-
ture of a given heterogeneous continuum. As an alternative to the
foregoing treatments, one-dimensional multi-scale homogeniza-
tion of a bi-layered laminate was considered in Chen and Fish
(2001) and Fish et al. (2002). Such approach allows one to obtain
a closed-form expression for the intrinsic length scale in terms of
the parameters of the laminate. In the present investigation, it is
shown that the homogenization strategy in Chen and Fish (2001)
and Fish et al. (2002) amounts to a Taylor series expansion of the
affiliated dispersion relationship, enabling the gradient elasticity
model to capture the initial slope and the initial curvature thereof.
In this case, however, the theory of gradient elasticity fails to
capture the salient ‘‘meso’’-frequency features brought about by
the microstructure, such as the presence of the band gaps.

An experimental measurement of the length-scale parameters
of gradient elasticity is likewise an arduous task, as their effect
on the sensory data may be limited. For example, static methods
were deployed in Aifantis (1999), Lam et al. (2003) and Askes
et al. (2012), where the size effects in torsion, bending and fracture
were used to determine the relevant length-scale parameters. In
the context of fracture mechanics, the intrinsic length scale may
be calibrated assuming the equality between the maximum princi-
pal stress and the uniaxial tensile strength of a material (Askes
et al., 2012). On the other hand, the dynamic methods geared
toward exposing the intrinsic length scales typically entail mea-
surements of wave dispersion. For instance, the ultrasound wave
dispersion in polycrystalline metals was studied in Savin et al.
(1970), while Jakata and Every (2008) deployed neutron scattering
to obtain the dispersion characteristics of cubic crystals. In Wang
and Hu (2005), on the other hand, the dispersion of flexural waves
in carbon nanotubes (obtained via molecular dynamic simulations)
was compared to that stemming from the theories of gradient
elasticity. In most wave-based techniques, however, the attention
is focused on the low-frequency approximation of the germane
dispersion relationship, whereby the dispersion is treated as a
small correction to the ‘‘baseline’’ non-dispersive wave model.
Unfortunately, such paradigm does not cater for distinguishing
between multiple length scales of gradient elasticity, e.g. between
the ‘‘static’’ length scales and those that are inertia-related.

To help bridge the gap, this work employs both theoretical
analysis and experimental observations to shed light on the

fundamental relationship between the material microstructure,
wave dispersion, and equivalent-homogeneous parameters of gra-
dient elasticity. The primary goals are to understand the physical
meaning of the length-scale parameters featured by two promi-
nent models of gradient elasticity and to attempt their measure-
ment in an experimental setting. To facilitate the analytical
treatment of the dispersion analysis, a one-dimensional problem
of longitudinal wave propagation in an elastic rod with periodically
varying cross-section is adopted as a modeling platform.

2. Problem statement

Consider the propagation of longitudinal waves in a non-
uniform rod characterized by the periodic pattern of rectangular
cuts as shown in Fig. 1. The cuts, also referred to as the ‘‘damage’’,
endow the wave propagation problem with a length scale L (the
length of the unit cell) and a dimensionless parameter c ¼ A2=A1,
which describes the ratio between the damaged and intact cross-
sectional areas. The analysis of the wave dispersion in such periodic
system is performed from both theoretical and experimental per-
spectives, with the aim of establishing a link between the parame-
ters of gradient elasticity and germane material microstructure.

3. Wave dispersion in a periodic bi-layered structure

To study dispersion of elastic waves in a homogeneous rod with
varying cross-section, it is useful to first consider an equivalent
one-dimensional (1D) model that assumes constant cross-section
but varying material properties as shown in the right panel of
Fig. 1. Assuming time-harmonic excitation at frequency x, the gov-
erning equation for the propagation of longitudinal waves in the
latter system reads
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where x is the axial coordinate; u carries the implicit time factor
eixt , and qðxÞ and EðxÞ signify respectively the (varying) mass den-
sity and Young’s modulus of the rod. In this setting, the analysis
of wave propagation through material with periodic structure can
be performed using the Bloch analysis e.g. (Brillouin, 1946), which
can be formulated for the unit cell as
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where u and r ¼ E@u=@x denote respectively the axial displacement
and affiliated normal stress, and k is the wave number. Relationship
(2) can be understood as the boundary condition for the problem of
wave propagation through a bi-layered material that is governed by
(1). With the aid of the transfer matrix approach, on the other hand,
the solution of (1) can be written as
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where the matrices T1 and T2 are given respectively by
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Fig. 1. Schematics of the elastic rod with rectangular cuts (left) and its 1D
approximation (right).
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