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a b s t r a c t

A material is of coaxial type if the Cauchy stress tensor T and the strain tensor B are coaxial for all defor-
mations. Clearly a hyperelastic material is of coaxial type if and only if it is isotropic. Here we present a
weaker definition of materials of coaxial type. Anisotropic materials may be of a coaxial type in a weak
sense if for a given specific B we have that TB ¼ BT . We denote these materials B-coaxial. We show that
for transverse isotropic materials weak coaxial constitutive equations may be characterized using univer-
sal relations. We discuss the impact of B-coaxial materials in the modeling of soft tissues. We conclude
that B-coaxial materials are a strong evidence that in real world materials two anisotropic invariants are
always necessary to model in a meaningful and correct way single fiber reinforced materials.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In recent times there has been a huge interest in the modeling
of the mechanical response of incompressible, transversely isotro-
pic, nonlinearly elastic materials and this because there are many
examples of biological, soft tissue reinforced with bundles of fibres
that have an approximate single preferred direction.

If we assume soft tissue non-dissipative, as is commonly the
case, then its mechanical response is determined completely by
the strain-energy function. We consider a compressible elastic so-
lid with a single fiber direction identified by the unit vector M in
the reference configuration. The strain-energy function W (defined
per unit reference volume) depends on five independent invari-
ants, usually denoted I1; I2; I3; I4; I5 (see, for example, Spencer,
1972). Here I1; I2, and I3 are the principal invariants of the right
Cauchy–Green deformation tensor C ¼ FT F (equivalently of the left
Cauchy–Green deformation tensor B ¼ FFT ), F being the deforma-
tion gradient tensor relative to the (unstressed) reference configu-
ration. Thus,

I1 ¼ trC; I2 ¼
1
2
ðtrCÞ2 � trðC2Þ
h i

; I3 ¼ det C: ð1:1Þ

The invariants associated with the fiber reinforcement are defined,
introducing the notation m ¼ FM, as

I4 ¼ m �m ¼M � CM; I5 ¼ m � Bm ¼M � C2M: ð1:2Þ

The Cauchy stress tensor, T , is given by the standard formula

T ¼ J�1F
@W
@F

; ð1:3Þ

where J ¼ det F ¼ I1=2
3 . Therefore we have

JT ¼ 2W1Bþ 2W2ðI1I � BÞBþ 2I3W3I þ 2W4m�m

þ 2W5ðm� Bmþ Bm�mÞ; ð1:4Þ

where I is the identity tensor and Wi ¼ @W=@Ii (i ¼ 1; . . . ;5Þ
It is interesting to notice that in modeling incompressible trans-

versely isotropic materials, it is usual to ignore the I2; I5 invariants
and to adopt the assumption that W ¼WðI1; I4Þ see for example,
among many others, Horgan and Murphy (2012), Humphrey and
Yin (1987) and Humphrey et al. (1990). In a recent series of papers
this constitutive assumption has been deeply criticized, see for
example Destrade et al. (2013) and Vergori et al. (2013) and the
unphysical features of the constitutive assumption W ¼WðI1; I4Þ
have been stressed out into details.

The aim of this note is to corroborate the above mentioned re-
sults showing that the problems we encounter in modeling trans-
verse isotropic materials are not related to the choice of the
invariant I4 but to the fact that we need to incorporate in the con-
stitutive model, in a independent way, both the I4 and I5 invariants.
If this does not happens, because for example we use only a single
anisotropic invariant (for an example a combination of I4 and I5) it
is possible to encounter serious mechanical problems.

Our arguments are based on a remarkable use of universal
relations (Saccomandi, 2001). An universal relation is an equation
that holds for every material in a specified class. For compressible
and incompressible isotropic materials, universal relations are
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mainly generated by the coaxiality of strain and stress and they
were first discovered by Rivlin (1997) for the simple shear defor-
mation and subsequently examined in detail for a huge class of
deformations by Beatty (1987). For transverse isotropic materials
universal relations have been obtained by Saccomandi and
Vianello (1997).

Vianello (1996) has found that the coaxiality between stress
and strain (and therefore universal relations) is strictly related
to a classical question in applied mechanics of composite
materials:

How can we determine, for a given body and a given deformation,
the conditions under which an appropriate rotation yields a critical
value (in particular, a maximum or a minimum) for the stored
energy?

Considering this optimization problem in the framework of
transverse isotropic materials by using universal relations we pro-
vide an example of transverse isotropic materials, depending only
on a single anisotropic invariant, that behaves in a very special way
in a important class of deformations. These materials have been re-
cently proposed as a feasible constitutive model for soft tissues,
but our findings cast a strange light on the possibility to use such
models in real world applications.

2. Basic results

Vianello (1996) has given an elegant answer to the optimization
problem that we have posed in the Introduction. The solution pro-
posed by Vianello is valid in linear and non-linear elasticity:

Rotations which are critical for the stored energy are exactly those
that correspond to coaxial states of stress and strain.

To be more precise let us fix a deformation, i.e. a gradient of
deformation F. Now let us rotate the body before the deformation
is applied the new deformation gradient is given by FQ , where Q is
the rotation. For an isotropic body we have that WðFÞ ¼WðFQÞ be-
cause the symmetry group of an isotropic material is the full rota-
tion group, says Rot. Indeed, for an isotropic material is always
TB ¼ BT . On the other hand, for an anisotropic body, WðFÞ is, in
general, different from WðFQÞ.

Therefore is meaningful to consider, for a given F , the function
defined as follow

Q ! RðQÞ :¼WðFQÞ; 8Q 2 Rot: ð2:1Þ

Being R a continuous function over a compact set, in view of the
classical Weierstrass theorem it follows that this function has an
absolute minimum and an absolute maximum.

Vianello (1996) has shown that a given rotation Q is critical for
R if and only if the corresponding T and B are coaxial. This means
that for anisotropic materials we have to expect that the value R is
not constant for all Q 2 Rot and, if this happens, this is because we
are in a highly degenerate and special case.

Moreover, Vianello (1996) defines that a material is of coaxial
type if the stress tensor T and the strain tensor B are coaxial for
all deformations. Clearly a hyperelastic material is of coaxial type
if and only if it is isotropic.

On the other hand, we may have a weaker definition of a mate-
rial of coaxial type. Anisotropic materials may be of a coaxial type
in a weak sense if for a given B we have that TB ¼ BT . Because this
results depends on the specific B, we denote these materials as
B-coaxial. It is possible to show that in the class of transverse
isotropic materials we have a class of constitutive equations of a
coaxial type in this weak sense and to this end we have to consider
the mathematical tool of universal relations.

It is well known from a celebrated Beatty’s paper (1987), that
coaxiality between stress and strain is a machine to generate uni-
versal relations for isotropic materials. Roughly speaking this
means that for isotropic materials if we fix a general deformation
it is possible to have three universal relations1 and these universal
relations may be represented as the components of the axial vector
associated with the skew tensor TB� BT .

Saccomandi and Vianello (1997), have shown that for trans-
verse isotropic materials, in general, we have only one universal
relation. This relation may be obtained considering that, from
(1.4), it is

JðTB�BTÞ¼2W4ðm�Bm�Bm�mÞþ2W5ðm�B2m�B2m�mÞ:
ð2:2Þ

Let us denote with ðWÞ� the axial vector associated to a given a
skew tensor W . Both sides in (2.2) represent a skew tensor and
therefore it must be using basic vector algebra

JðTB� BTÞ� ¼ 2m� W4BþW5B2
� �

m: ð2:3Þ

From (2.3) it is clear that

ðTB� BTÞ� �m ¼ 0: ð2:4Þ

The (2.4) is the only universal relation valid for all B and for all
transverse isotropic material W ¼WðI1; I2; I3; I4; I5Þ. Relation (2.4)
is a partial coaxiality condition in the fiber direction.

2.1. Additional universal relations

2.1.1. Special deformations
Let us consider special deformations such that m� Bm�

B2m ¼ 0, i.e. there exists two scalar d1 and d2 such that

B2m ¼ d1mþ d2Bm: ð2:5Þ

In this case, it must be

ðI �m�mÞBm ¼ d�1
2 ðI �m�mÞB2m: ð2:6Þ

where d�1
2 does not depends on M.

When (2.5) holds we have the possibility to rewrite (2.3) as

JðTB� BTÞ� ¼ 2m� W4 þ d�1
2 W5

� �
ðI �m�mÞBm ð2:7Þ

and

ðTB� BTÞ� � ðI �m�mÞBm ¼ 0 ð2:8Þ

is an additional universal relation valid for any transverse isotropic
material W ¼WðI1; I2; I3; I4; I5Þ.

In the highly degenerate case where the three vectors m; Bm
and B2m are parallel full coaxiality between stress and strain is re-
corded also for all transverse isotropic materials. For compressible
materials this is the case of pure dilatation.

The condition (2.6) is not exotic. If we consider just a triaxial
stretch

x ¼ k1X; y ¼ k2Y ; z ¼ k1Z

and a generic arrangement of fibers in the reference configuration
(i.e. a generic unit vector M) there are infinite ways to arrange
(2.6). For example, if M3 ¼ 0 the (2.6) is satisfied if

k2
1M2

1 þ k2
2M2

2 ¼ 1:

1 The rigorous proof that in the general case for isotropic elastic materials we have
three universal relation is contained in (Pucci and Saccomandi, 1997) where methods
of algebraic geometry are used.
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