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a b s t r a c t

This paper presents a series solution for the homogenization problem of a linear viscoelastic periodic
incompressible composite. The method uses the Laplace transform and the correspondence principle
which are combined with the classical expansion along Neumann series of the solution of the periodic
elasticity problem in Fourier space. The terms of the Neumann series appear as decoupled, containing
geometry dependent terms and viscoelastic properties dependent terms which are polynomial fractions
whose inverse Laplace transforms are provided explicitly.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The methods used for predicting the effective properties of
heterogeneous viscoelastic composites comprise solutions to the
problem of the complex moduli (Brinson and Lin, 1998) with appli-
cations to dynamic problems, but the most important practical
problem is to predict relaxation or creep functions. This last
objective is generally attained by using Laplace transform of the
equations, the main problem being to produce accurately the in-
verse Laplace transform. This was effected for Mori–Tanaka or
Self-Consistent modelings (Beurthey et al., 2000; Rougier et al.,
1994; Le et al., 2007), which allow to obtain the relaxation function
explicitly or by using a simple 1D integral. In addition, all effective
behaviours must comply with some asymptotic conditions, as
obtained for example in the case of Maxwell constituents (Suquet,
2012).

The determination of the effective properties of periodic media
using the classical Neumann series was used from a theoretical
point of view since a long time (Brown, 1955), for conductivity,
or for elasticity, by using the related Green’s tensors. The practical
application in conduction and elasticity rests on iterative schemes
and on the use of the Fourier transform because the Fourier trans-
form of the Green’s tensor is known explicitly for an homogeneous
medium in the case of elastic constitutive equations (Michel et al.,
1999, 2001; Monchiet and Bonnet, 2012; Moulinec and Suquet,

2003, 1994, 1998; Bonnet, 2007). Approximate solutions based
on Nemat-Nasser et al. (1982), which use Fourier transforms of
the solutions, can produce explicit results in the case of viscoelastic
components (Luciano and Barbero, 1994; Barbero and Luciano,
1995; Hoang-Duc et al., 2013) but these solutions are no more
valid for high concentrations of inclusions or high contrasts. Accu-
rate solutions at any concentration were obtained either by
time-step integration (Lahellec and Suquet, 2007) or by numerical
Laplace inverse, generally using collocation methods (Yi et al.,
1998). However, a method based on Fourier transform, but which
does not need numerical time-step integration or numerical
Laplace inversion would be highly desirable. This is the aim of
the paper.

In the following, this method will be called ‘‘NS method’’. The
solution for determining the macroscopic behavior of viscoelastic
periodic media is developed by using the classical Neumann Series
for the effective elastic properties.

The paper is organized as follows: The constitutive relation used
for the individual constituents is presented in Section 2. Then, we
present in Section 3 simplified formulations of the effective prop-
erties of composite elastic media made of isotropic constituents
with a decoupling of elastic properties and geometry properties
in each term of the Neumann series. This decoupling appears only
in some specific cases, including the case of incompressible con-
stituents. This result is used in the next section to determine the
expression of the relaxation function of the viscoelastic periodic
composites at the macroscale. Finally, the method is checked
against results coming from previous works.
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2. Linear viscoelastic behavior

2.1. Constitutive equations for an isotropic viscoelastic medium

In the following, a composite material is studied where the con-
stituting phases are either elastic or non ageing viscoelastic. The
constitutive stress–strain relation of a non-ageing viscoelastic
material is given classically (Christensen, 1969; Salençon, 2009),
by a Stieltjes integral as:

r tð Þ ¼
Z t

0
R t � sð Þ :

d� sð Þ
ds

ds ¼ R : ~ð Þ _� ð1Þ

or reversely:

� tð Þ ¼
Z t

0
J t � sð Þ :

dr sð Þ
ds

ds ¼ J : ~ð Þ _r ð2Þ

where R; J are tensorial relaxation and creep functions. The dot de-
notes the time derivative and the convolution of two functions f and
g, denoted as ‘‘f~g’’, is defined by:

f~gð Þ xð Þ ¼
Z þ1

�1
f x� tð Þg tð Þdt ð3Þ

For a viscoelastic isotropic material, tensor R depends only on
two scalar functions Rj tð Þ and Rl tð Þ which are relaxation functions
for compression and shear. The behavior of the material can be ex-
pressed by using the following form:

r tð Þ ¼ Rj tð Þ~tr _� tð Þ1þ 2Rl tð Þ~ _e tð Þ ð4Þ

where e is the deviator of the strain tensor.
The viscoelastic constitutive equations of an isotropic viscoelas-

tic material are therefore defined by two relaxation functions: RjðtÞ
and RlðtÞ.

2.2. Laplace–Carson transform

The Laplace–Carson transform f � pð Þ of a real function
f tð Þ; t P 0 is obtained from its Laplace transform ~f sð Þ by:

f � sð Þ ¼ s~f sð Þ ¼ s
Z 1

0
e�st f tð Þdt ð5Þ

Effecting the Laplace–Carson transform of the first expression in (4)
leads to:

r� sð Þ ¼ R�j sð Þtr�� sð Þ1þ 2R�l sð Þe� sð Þ ð6Þ

where s is the Laplace variable.
These expressions show that for any fixed value of s, the stress–

strain relation in Laplace–Carson space is formally equivalent to
the elasticity constitutive equation of an isotropic elastic material.
This constitutes the ‘‘correspondence principle’’.

3. Decoupled forms of the overall properties of elastic periodic
composites in specific cases

The paper presents different forms of the overall properties un-
der the form of a series whose all terms are decoupled into two
parts: the first part depends only on the microstructure and the
second part depends only on the elastic properties. Such a decou-
pling is possible only in specific cases. So, different cases of series
comprising decoupled terms are presented: two different forms
(strain formulation and stress formulation) in the case of incom-
pressible media and the strain formulation for a specific case of
composite containing compressible materials. An example of result
obtained by this method is shown and the main results coming
from the literature are presented concerning the convergence of
the series.

3.1. Basic equations of the problem

Let us consider a periodic composite built on a periodic cell X as
in Fig. 1 by translation along the three directions of the space.

One denotes by 2ai i ¼ 1;2;3ð Þ, the dimension along direction xi

of a basic parallelepipedic cell. Then the displacement field
u ¼ u xð Þ, the strain field � ¼ � xð Þ and the stress field r ¼ r xð Þ in-
duced by a macroscopic strain tensor E are solutions of:

� xð Þ ¼ 1
2 $� u xð Þ þ $� u xð Þð Þt
� �

$ � r xð Þ ¼ 0
r xð Þ ¼ C xð Þ : � xð Þ
u xð Þ ¼ E:xþ uper xð Þ

8>>><>>>: ð7Þ

where the displacement field uper is X-periodic and C xð Þ is the elas-
ticity tensor satisfying the periodicity condition:

C xð Þ ¼ C xþ dð Þ

d ¼
X3

i¼1

2niaiei

8><>: ð8Þ

where ni is an arbitrary integer. Strain and stress tensors are also
periodic:

r xð Þ ¼ r xþ dð Þ
� xð Þ ¼ � xþ dð Þ ¼ Eþ �per

�
ð9Þ

3.2. Strain and stress fields in Fourier space

Because of the periodicity of the medium, the solution can be
developed into Fourier series, as proposed by Iwakuma and
Nemat-Nasser (1983) or Moulinec and Suquet (1994).

Let us consider a periodic function f xð Þ defined on the cell X
defined by:

X ¼ x;�aj 6 xj 6 aj j ¼ 1;2;3ð Þ
� �

ð10Þ

with the condition of periodicity: f xð Þ ¼ f xþ dð Þ
This function can be expanded into Fourier series as follows:

f xð Þ ¼
X

n

bf nð Þeinx; i ¼
ffiffiffiffiffiffiffi
�1
p

ð11Þ

with:bf nð Þ ¼ 1
V

Z
V

f xð Þe�inxdV ; nj ¼
pnj

aj
; no sum on jð Þ ð12Þ

Let us consider the periodic part uper of the displacement field u
those constant part is assumed null:

uper xð Þ ¼
X0

n

duper nð Þeinx ð13Þ

where a prime on R indicates that n ¼ ffiffiffiffiffiffiffiffiffiffi
nknk
p ¼ 0 is excluded from

the summation. Each Fourier component is given by:

duper nð Þ ¼ 1
V

Z
V

uper xð Þe�inxdx ð14Þ

2a

Fig. 1. Basic cell of a heterogeneous periodic medium.
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