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a b s t r a c t

Kernels for non-local elasticity are in general obtained from phonon dispersion relations. However,
non-local elastic kernels are in the form of three-dimensional (3D) functions, whereas the dispersion
relations are always in the form of one-dimensional (1D) frequency versus wave number curves
corresponding to a particular wave direction. In this paper, an approach to build 2D and 3D kernels from
1D phonon dispersion data is presented. Our particular focus is on isotropic media where we show that
kernels can be obtained using Fourier–Bessel transform, yielding axisymmetric kernel profiles in recipro-
cal and real spaces. These kernel functions are designed to satisfy the necessary requirements for stable
wave propagation, uniformity of nonlocal stress and stress regularization. The proposed concept is dem-
onstrated by developing some physically meaningful 2D and 3D kernels that will find useful applications
in nonlocal mechanics. Relative merits of the kernels obtained via proposed methods are explored by fit-
ting 1D kernels to dispersion data for Argon and using the kernel to understand the size effect in non local
energy as seen from molecular simulations. A comparison of proposed kernels is made based on their pre-
dictions of stress field around a crack tip singularity.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Theories of classical continuum mechanics which relate local
strain to work-conjugate local stress measures, provide length-
scale independent solutions, and are successful in addressing a
large number of physical problems. However, these theories are
found to be deficient for several situations that require a character-
istic length scale of the medium to enter in the physical solution.
Examples include stress and strain fields around sharp crack-tips,
wave dispersion, strain softening and attendant size effects (see
for example, Bažant and Cedolin, 2010). The fact that atomistic cal-
culations of material properties are necessarily non-local in their
construction, upscaling from an atomistic model to a continuum
model would lead to continuum stress–strain relations that display
non-local character. Nonlocal theories and their implementations
have been intensely researched due to their promise in capturing
non-local atomistic phenomena, however, the understanding
developed to-date is incomplete. Several review articles, (Bažant
and Jirásek, 2002; Aifantis, 2003; Askes and Aifantis, 2011; Maugin

and Metrikine, 2010) have provided important details and much
insight into the types of non-local continuum theories that are at
our disposal. There exists varieties of nonlocal theories depending
on the strategies to incorporate additional atomistic features. The
focus of the present paper is on the integral type nonlocal theory
proposed in (Eringen, 1983).

In the integral type nonlocal theory, the stress at a material
point is related to a weighted integral of strains over a certain finite
neighborhood. The weighting function (a) is the non-local kernel.
The nonlocal stress, t, in a linear elastic body, V, can be described
as,

tijðxÞ ¼
Z

X
aijklðx; x0Þ�klðx0ÞdX ð1Þ

where a is a tensorial kernel representing an attenuating elastic
modulus. Here, t and � are the nonlocal stress and local strain ten-
sors, respectively, X � V is the compact support for the kernel and x
and x0 are position vectors for two material points in X. In isotropic
media, it is assumed that a unique kernel weights all entries of the
stiffness tensor equally (Eringen, 2002), and the above equation
becomes,

tijðxÞ ¼
Z

X
aðx; x0ÞCijkl�klðx0ÞdX ¼

Z
X
aðx; x0Þrijðx0ÞdX ð2Þ

Here, r is the Hookean (local) stress tensor, Cijkl is the stiffness
tensor for an isotropic material and a is a scalar kernel function. In
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general, the following additional properties are attributed to the
kernel function, a, as described in (Eringen, 1983),

� The kernel has a peak at kx� x0k ¼ 0, and decays with increas-
ing distance kx� x0k.
� The kernel function a reverts to a delta function as the non local

zone of influence vanishes, i.e., as limX!0a ¼ d. As such, aðx; x0Þ
satisfies the normalization condition, i.e.,

R
X aðx; x0ÞdX ¼ 1.

� a is bi-symmetric, i.e., aðx; x0Þ ¼ aðx0; xÞ and function of x� x0.

Additionally, Bažant and Chang (1984) suggested that a contin-
uum should not yield zero energy modes for non-rigid-body defor-
mations and should have real wave propagation velocity, which
requires that the Fourier transform of a have positive values all
over the reciprocal space. The same restriction on a has been
reached in Polizzotto (2001) by noting that Eq. (2) is a homoge-
neous Fredholm integral equation of first kind and then invoking
the Fredholm integral equation theory. It is noted in Bažant and
Chang (1984) that some of the popular kernels do not satisfy the
required conditions. Thus, it is suggested to include a dirac delta
function to alleviate this problem. However, the inclusion of a delta
function leads to the loss of stress regularity property of nonlocal
elasticity whenever the local stress is singular. In contrast to the
above mentioned restrictions on the kernel, recent research
through molecular simulations have indicated that at the nano-
scale, the kernel a attenuation need not be monotonous (Picu,
2002; Sundararaghavan and Waas, 2011). The reason for a to be
non-monotonous is attributed to the similarity between non-local
kernels and inter-atomic potentials (Picu, 2002; Sundararaghavan
and Waas, 2011). The normalization condition suggests that for
all X � V a uniform local strain field would produce a uniform non-
local stress field. However, we point out that this particular restric-
tion of nonlocal kernel is meant to be satisfied as long as X does not
intersect the boundary @V of the body V. Violation of the normali-
zation requirement leads to various problems, for instance, when X
intersects @V , a uniform strain yields a non-uniform nonlocal
stress. From a purely mathematical perspective, few modifications
to the kernel (Polizzotto, 2001; Borino et al., 2003; Polizzotto et al.,
2004) have been suggested in the past in order to satisfy the nor-
malization requirement at domain boundaries. Notwithstanding
the symmetry achieved in these papers, we note that the symme-
try condition of any function is determined by symmetry of its do-
main and codomain. Since, near the boundary X å V , the domain of
a itself is not symmetric with respect to the center of X. Hence, the
symmetry conditions near the boundary may need further investi-
gation. For detailed description about the properties of the kernel
function, the reader is referred to Eringen (1983), Bažant and
Chang (1984), Bažant and Jirásek (2002), Polizzotto (2001) and
Ghosh et al. (2013).

While various studies have focused on (mostly macroscopic)
nonlocal continuum and their numerical implementations, only a
few have focused on the connection of these theories to realistic
materials at small scale (Lam et al., 2003; Han, 2010, and refer-
ences therein). The various additional (length scale) parameters
or kernels needed to capture the non-locality of the material can
be obtained via molecular simulations (Picu, 2002; Maranganti
and Sharma, 2007a). A systematic attempt at generating 3D kernels
from molecular simulations is developed in Picu (2002). However,
the 3D kernels are not defined for distances below the distance at
which the radial distribution function goes to zero, and were con-
structed only for pairwise potentials. For general interatomic
potentials, the nonlocality is commonly obtained via wave disper-
sion studies. The dispersion curves are obtained for wave modes
propagating along specific wave vectors. The dispersion curves
obtained in this manner are inherently one dimensional, whereas
for analyzing continua (represented via integral type nonlocality)

multi-dimensional kernels are needed. In this paper, a new and
general procedure to obtain 2D and 3D isotropic nonlocal kernels
from dispersion data is proposed. Our particular focus is on
isotropic media, where we show that kernels obtained using
Fourier–Bessel transform, yield axisymmetric kernel profiles in re-
ciprocal or real space. These kernels satisfy the necessary require-
ments for stable wave propagation, and uniformity of nonlocal
stress and stress regularization. The proposed concept is demon-
strated using physically meaningful 2D and 3D kernels that should
find useful applications in nonlocal mechanics.

2. Integral-type nonlocal elasticity

The equations of motion for a non-local medium is given by,

tij;i þ qðfj � €ujÞ ¼ 0 ð3Þ

where tij ¼ Cijkl
R

X aðx� x0Þ�klðx0ÞdX for an isotropic medium. It is
experimentally observed that bulk and surface waves experience
wave dispersion at higher frequencies, i.e., the phase velocity de-
pends on the wavelength. The theories of lattice dynamics can dem-
onstrate this dispersion behavior (see Dove, 1993) but classical
elasticity fails to do the same. The following steps recapitulate that
nonlocal elasticity can represent wave dispersion through the ker-
nel function. Consider a plane wave solution for an infinite nonlocal
solid with no body force: ujðx; tÞ ¼ Aj eiðk�x�xtÞ, where k and x are the
angular wave vector and the angular frequency respectively. Substi-
tuting uj in the equilibrium equation, Eq. (3), yields:

jqx2djk � CijklâðkÞkiklj ¼ 0 ð4Þ

here âðkÞ denotes the Fourier transformed kernel. The phonon dis-
persion relation relating the angular frequency x and the wave
number k ¼ kkk is given by Eq. (4). For isotropic case
(Cijk‘ ¼ kdijdk‘ þ lðdikdj‘ þ di‘djkÞ) in which k and l denote the Lame’
constants, the above equation reduces to the following:

qx2 ¼ ðkþ 2lÞ âðkÞk2 for longitudinal waves

qx2 ¼ lâðkÞk2 for transverse waves

As described previously, in a local continuum, the kernel is a delta
function (âðkÞ ¼ 1) in which case the phase velocity (x=k) does
not depend on the wave vector k. For a non-local continuum, the
kernel âðkÞ provides the means to capture the non linear depen-
dence of phase velocity on the wave vector. In addition, for an iso-
tropic medium, the kernel function does not depend on the mode of
wave propagation. This is seen by rewriting the above equation as:

qx2
L

kþ 2l
¼ qx2

T

l
¼ âðkÞk2

Here, the subscripts L and T demotes the longitudinal and trans-
verse waves respectively. Phonon dispersion data can be obtained
either experimentally or through molecular simulation. The
following section assumes that the phonon dispersion is known
and focuses on obtaining the two-dimensional (2D) and three-
dimensional (3D) kernel in real space (a3DðxÞ) from one-dimensional
(1D) kernel in reciprocal space (â1DðkÞ) found by fitting Eq. (4) to
the phonon dispersion data.

3. Construction of multidimensional isotropic kernels

Kernel functions needed for 1D elasticity models are even func-
tions, hence can simply be obtained by Fourier-cosine transform of
the â1D. While in 1D, the isotropy induces merely the evenness of the
kernel, in 2D and 3D it also induces rotational symmetry, i.e., the
a2DðxÞ and a3DðxÞ should have cylindrical and spherical symmetries
respectively. The most natural way to build scalar functions on a 3D
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