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a b s t r a c t

Recent experimental results show that strain-induced crystallization can substantially improve the crack
growth resistance of natural rubber. While this might suggest superior designs of tires or other industrial
applications where elastomers are used, a more thorough understanding of the underlying physics of
strain-induced crystallization in natural rubber has to be developed before any design process can be
started. The objective of this work is to develop a computationally-accessible micro-mechanically based
continuum model, which is able to predict the macroscopic behavior of strain crystallizing natural rubber.
While several researchers have developed micro-mechanical models of partially crystallized polymer
chains, their results mainly give qualitative agreement with experimental data due to a lack of good
micro–macro transition theories or the lack of computational power. However, recent developments in
multiscale modeling in polymers give us new tools to continue this early work. To begin with, a micro-
mechanical model of a constrained partially crystallized polymer chain with an extend-chain crystal is
derived and connected to the macroscopic level using the non-affine micro-sphere model. Subsequently,
a description of the crystallization kinetics is introduced using an evolution law based on the gradient of
the macroscopic free energy function (chemical potential) and a simple threshold function. Finally a numer-
ical implementation of the model is proposed and its predictive performance assessed using published data.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The study of strain-induced crystallization (SIC) in natural rub-
ber (NR) dates back almost a century to Katz (1925). He discovered
that NR underwent a transformation from an initially amorphous
solid state to a semi-crystalline state when subjected to strain by
means of X-ray diffraction, a method that is still state of the art.
Ever since, SIC in NR has been a topic within the complex subject
of rubber elasticity, not only because NR is widely used in indus-
trial applications such as tires, seals, and medical devices, but also
because its study might deepen the understanding of the Mullins’
effect (Govindjee and Simo, 1991) and provide additional insight
into the superior crack growth resistance of natural rubber (Le
Cam and Toussaint, 2010). Despite this apparent significance, scant
work has been done in the development of a micro-mechanically
based continuum model of SIC in NR.

This type of modeling task typically includes a combination of
three equally important parts:

1. A micro-mechanical model of a partially crystallized polymer
chain.

2. A description of the crystallization kinetics in polymers, i.e. the
time evolution of the degree of crystallinity within the material.

3. A micro-to-macro transition that connects micro-kinematic
variables of the single chain with macroscopic continuum
deformation measures.

The cornerstone was laid by Flory’s statistical mechanical theory of
extended chain crystallization (Flory, 1947). In this theory he uses
a Gaussian distribution function to model the partially crystallized
polymer chains and assumes that the crystallized part of the chain
is oriented in the direction of stretch. There is no evolution of the
degree of crystallinity involved, since equilibrium crystallization
is assumed. All the relations in Flory’s model are derived for uniax-
ial loading using an affine deformation assumption, which is
known to result in inaccurate predictions for large deformations.
Some years later, Gaylord (1976) and Gaylord and Lohse (1976)
developed an improved theory of SIC with two modified assump-
tions. Unlike Flory, they took chain folding into account, which
adds insight about crystal morphologies and orientation, and they
used a non-Gaussian distribution function derived by Wang and
Guth (1952) to model the polymer chains. At the same time
another model was proposed by Smith (1976). He relaxed Flory’s
condition that the extended crystal has to be oriented in the direc-
tion of stretch by saying that the direction a chain takes through a
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crystal is determined by the first few links of a chain entrapped
within the crystal itself. Other than giving good qualitative agree-
ment with experimental data, all of the above mentioned models
have the following three things in common: Firstly, all of them
develop a detailed micro-mechanical model of a partially crystal-
lized polymer chain. Secondly, only equilibrium crystallization is
assumed and thus the time evolution of crystallinity is not consid-
ered. Thirdly, all of them lack a satisfactory micro-to-macro
transition.

Crystallization kinetics itself is a widely studied phenomenon,
e.g. in the study of phase changes in metals. Roughly speaking
there are three different approaches. One of the most extensively
used approaches to describe the process of crystallization is the
model of Avrami (1939, 1940, 1941). Based on geometric consider-
ations of nucleation and crystal growth, the equation of Avrami is
given by the exponential law x / 1� e�kVt , where x is the degree
of crystallinity, k is the average density of nuclei, and Vt is the vol-
ume a crystal would occupy after a time t. Here Vt depends on the
growth rate and the shape of the crystal. Some years later a similar
equation was obtained by Evans (1945) and applied to tempera-
ture-induced crystallization of Nylon 6,6 by Allen (1952). Gent
(1954) was the first to extend the treatment of Avrami to stretched
natural rubber vulcanizates and approximate the time functions
governing crystal growth. Another widely used approach is taken
by Becker (1938), Turnbull and Fisher (1949) and Hoffman and
Weeks (1962). They use an Arrhenius equation to describe the
crystallization process, _x / exp �DF=ðkBTÞð Þ, where _x is the rate
of crystallization and DF the free energy change upon crystalliza-
tion. A third approach first discussed for polymer crystallization
by Roe and Krigbaum (1965) is based on a micro-mechanical mod-
el of a partially crystallized polymer chain and uses its free energy
gradient (chemical potential) _x / �@F=@x as the driving force for
crystallization.

The lack of a satisfactory micro-to-macro transition has also
been a challenging topic within the micro-mechanically based
modeling of rubber elasticity. A good overview of constitutive
models can be found in Boyce and Arruda (2000). More recently
Miehe et al. (2004) have extended the micro-plane model of Bazant
and Oh (1985) to the so-called non-affine micro-sphere model of
rubber elasticity. This is a microscopically motivated finite defor-
mation model for rubberlike materials. The model combines three
special features: Firstly, it includes a non-affine stretch component,
where micro and macro stretches are linked through a fluctuation
field on a micro-sphere. The fluctuation field itself is determined by
a minimization of a microstructural free energy. Secondly, polymer
cross-links and entanglements are also considered using the so-
called tube model of rubber elasticity, where the movement of a
single chain is restricted by a tube-like constraint (Doi and Ed-
wards, 1986). Thirdly, since closed-form solutions to the averaging
integrals over a sphere are not available, a 21-point integration
scheme, as derived in the original micro-plane model of Bazant
and Oh (1985), is used.

The objective of this work is to leverage these ideas and develop
a computationally-accessible micro-mechanically based contin-
uum model, that is able to predict the macroscopic behavior of
NR. The derivation of this model parallels the steps in Miehe and
Göktepe’s non-affine micro-sphere model with select changes:
Firstly, on the microscopic level the free energy of a partially crys-
tallized unconstrained single chain is considered instead of a fully
amorphous chain. The model used for the chain will be a modified
version of Smith (1976), which provides a way of modeling a semi-
crystalline chain with extended crystals (Section 3). The micro-
scopic model is connected to the macroscopic level using the
non-affine micro-sphere model (Section 4). Secondly, on the mac-
roscopic level an evolution law for the degree of crystallinity based
on the macroscopic free energy is introduced, where the free en-

ergy gradient is used as a driving force (Roe and Krigbaum, 1965)
(Section 2). Moreover, a threshold function for the evolution law
inspired by phase change evolution in martensitic alloys (Govind-
jee and Miehe, 2001) is introduced. Thirdly, the numerical imple-
mentation using a return mapping algorithm is explained in
Section 6. Finally in Section 7 the model is discussed and the pre-
dictive performance of the proposed model assessed along with a
comparison to the work of Kroon (2010).

2. Macroscopic setting of model

At the macroscopic scale the model assumes a free energy
function that depends on the right Cauchy–Green deformation
tensor C and the internal variable x, a macroscopic measure of
the degree of crystallinity in the material:

W ¼ W C; xð Þ: ð1Þ

Following the argument that the mechanical dissipation cannot be
negative (see e.g. Coleman and Noll, 1963, Truesdell and Noll,
1965, Section 79, or Simo and Hughes, 1998)

Dmech ¼
1
2

S : _C � _W P 0; ð2Þ

the second Piola–Kirchhoff stress is given by

S ¼ 2
@W
@C

; ð3Þ

with the additional condition

� @W
@x

_x P 0: ð4Þ

The evolution of the degree of crystallinity is chosen to be governed
by the macroscopic free energy function by setting the rate of the
degree of crystallinity to

_x ¼ �A
@W
@x

; A P 0; ð5Þ

where the free energy gradient acts as a driving force for the crys-
tallinity. The condition A P 0 immediately follows from inserting
Eq. (5) into Eq. (4). The degree of crystallinity however, can only
evolve once a certain chemical potential threshold is reached. In or-
der to incorporate this into the model, a chemical potential ‘‘yield
function’’ of the form

g ¼ @W
@x

����
����� ðgc þ cxÞ 6 0 ð6Þ

is introduced, where gc P 0 (threshold at zero degree of crystallinity)
and c (hardening/softening parameter) are material constants. As
long as g < 0, the degree of crystallinity does not evolve; i.e. Ag ¼ 0.

Following common practice, a decoupling of the free energy
function into volumetric and isochoric parts is introduced by use
of the unimodular part of the deformation gradient (Flory, 1961)

�F :¼ J�1=3F; J ¼ det F ð7Þ

and using the form

W ¼ WvolðJÞ þ �W �C;x
� �

; �C ¼ �FT �F; ð8Þ

with volumetric and isochoric contributions to the free energy
function. Applying (3) to the decoupled macroscopic free energy
leads to the standard result in compressible hyperelasticity (see
e.g. Holzapfel, 2000, Chapter 6)

S ¼ JW0volðJÞC
�1 þ J�2=3

I� 1
3

C�1 � C
� �

: 2
@ �Wð�C;xÞ

@�C
: ð9Þ

The volumetric response WvolðJÞ can be any scalar valued function
which is strictly convex, has unbounded value as J ! 0 and
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