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a b s t r a c t

A yield function for single crystals containing voids has been developed based on a variational approach.
This first yield function is phenomenologically extended by modifying the dependence on the mean
stress and introducing three adjustable parameters. Unit cell finite element calculations are performed
for various stress triaxiality ratios, main loading directions and porosity levels in the case of a perfectly
plastic FCC single crystal. The three model parameters are adjusted on the unit cell calculations so that a
very good agreement between simulation results and the proposed model is obtained.

� 2013 Published by Elsevier Ltd.

1. Introduction

In crystalline metals, void nucleation, growth and coalescence
lead to ductile fracture. Since the last forty years, building on the
earliest works by Mc Clintock (1968); Rice and Tracey (1969);
and Gurson (1977), much effort has been made to improve the pre-
diction of damage evolution and fracture of porous ductile materi-
als at macro and mesoscopic scales. The role of various
characteristic features such as porosity, viscoplasticity, void shape,
plastic anisotropy of the matrix has been studied. Some reviews
were recently provided by Pineau and Pardoen (2007); Besson
(2010); Benzerga and Leblond (2010). Two main approaches have
been proposed to develop models for ductile damage growth. The
first one is based on the seminal work by Gurson (1977) which
uses an upper bound approach, following Tvergaard and Needle-
man (1984), Gologanu and Leblond (1993), Leblond et al. (1994),
Benzerga and Besson (2001), Monchiet et al. (2007), Monchiet
et al. (2008). The second approach is based on variational formula-
tion of the homogenization theory using the concept of linear-
comparison material, see Ponte Castañeda (1991); DeBotton and
Ponte Castañeda (1995); Liu et al. (2005); Danas and Ponte Castañ-
eda (2009) and Lebensohn et al. (2011).

Theoretical results obtained following these approaches can
be verified using unit cell calculations first introduced in the
pioneering work by Koplik and Needleman (1988). This versatile

methodology allows to easily study the effect of various parame-
ters on void growth and coalescence such as hardening rate (Fale-
skog et al., 1998; Gao et al., 1998; Lecarme et al., 2011), void
shape or cell shape (Pardoen and Hutchinson, 2000), void popula-
tion (Faleskog and Shih, 1997,Fabrègue and Pardoen, 2008 and
Fritzen et al., 2012), void distribution (Bandstra and Koss, 2008),
and second phase particles (Steglich and Brocks, 1997; Steglich
et al., 1999).

The effect of the anisotropy of matrix behaviour on void growth
was investigated in relation to the anisotropic plastic properties of
metal sheets, see in particular (Benzerga et al., 2004) and more re-
cently (Monchiet et al., 2008). Typically, a Hill-type yield criterion
was assumed for the matrix in the latter references. The situation is
quite different in the presence of voids embedded in a single crys-
talline matrix. The case of single crystals containing voids (hereaf-
ter referred to as porous single crystals) has only been studied
recently using the unit cell methodology either based on FE simu-
lations (Schacht et al., 2003; Yerra et al., 2010; Ha and Kim, 2010),
or based on slip line theory in the case of simple cylindrical voids
(Kysar et al., 2005; Gan et al., 2006; Gan and Kysar, 2007). Besides,
the analysis of ductile fracture in single crystals has been per-
formed at smaller scales for nano and micro-voids by means of Dis-
crete Dislocations Dynamics in (Huang et al., 2007; Hussein et al.,
2008; Segurado and Llorca, 2009; Segurado and Llorca, 2010 and
Huang et al., 2012), and Molecular Dynamics in (Potirniche et al.,
2006; Zhao et al., 2009; Traiviratana et al., 2008; Tang et al.,
2010b and Tang et al., 2010a). However a set of constitutive equa-
tions describing the overall behaviour of porous single crystals is
still lacking in the literature. The previously mentioned papers do
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not provide an overall yield function for porous single crystals.
There is currently a real need for such a yield function that would
be simple enough to allow straightforward Finite Element imple-
mentation for carrying out structural computations of ductile frac-
ture in single and poly-crystals. It could be used for instance to
reproduce experimental facts showing accelerated anisotropic
growth of cavities in single crystals as observed in Crépin et al.
(1996).

The purpose of the present work is to develop a model to describe
the yield function of porous single crystals. Such models could be
used to represent ductility of stainless steel (304/316 series) used
for core internals of Fast Breeder Reactor and PWR nuclear power
plants in which intragranular voids develop and lead to the phenom-
enon of swelling due to high irradiation levels (Foster and Strain,
1974; Seran et al., 1984; Dubuisson, 2011 and Renault et al., 2011),
also that of Ni based single crystal superalloys used in turbo-engines
components (Wang et al., 2006). The model is theoretically moti-
vated using a micromechanical analysis based on the variational ap-
proach by (Ponte Castañeda and Suquet, 1998). It is extended on a
phenomenological basis to match trends obtained for rate-indepen-
dent material (e.g. Gurson–Tvergaard–Needleman model). Unit cell
calculations are used to adjust and validate the model. Various load-
ing directions and porosity levels (from 0.5% to 10%) are used.

The single crystal constitutive framework is recalled in Sec-
tion 2.1. The proposed yield function for porous single crystal is
presented in Section 2.2. The Section 3 is dedicated to the identifi-
cation methodology of the corresponding material parameters
from unit cell computations. The results and validation of the ap-
proach are provided in Section 4 in terms of crystal orientation,
loading conditions and void volume fraction. The micromechanical
motivation of the model is explained in Appendix A.

2. Proposed model for porous single crystals

The analysis given in this paper is limited to the small deforma-
tion framework, as it is the case in standard limit analysis.

2.1. Model for the single crystal matrix

In this work, which essentially deals with yielding of porous
single crystals, a very simple law is used to describe the constitu-
tive behaviour of the single crystal matrix. For each slip system
s ¼ 1 . . . N, the resolved shear stress, ss is expressed as:

ss ¼ r : ms with ms ¼
1
2
~ls �~ns þ~ns �~ls

� �
ð1Þ

where r is the Cauchy stress tensor acting on the single crystal vol-
ume element.~ls and ~ns are the unit vectors along the slip direction
of the slip system s and normal to the slip plane, respectively. The
total number of slip systems is N. For each slip system a yield sur-
face can be defined as:

ws ¼ jssj � s0 ð2Þ

Provided that ws P 0, the slip rate for each slip system s is given as:

_csðssÞ ¼ _c0
ws

s0

� �n

¼ _c0
jssj � s0

s0

� �n

ð3Þ

where _c0; s0 and n are material parameters. s0 represents the criti-
cal resolved shear stress (CRSS) of the slip system. For the sake of
simplicity each slip system is assumed to have the same CRSS but
the model presented here can be easily extended in order to take
into account different CRSS as well as self and cross hardening.
Using the normality rule, the plastic strain rate tensor, _ep, is ex-
pressed as:

_ep ¼
X

s

_cs
@ws

@r
¼
X

s

_cssignðssÞms ð4Þ

2.2. Model for the porous single crystal

One considers here a single crystal containing spherical voids.
The void volume fraction is referred to as f in the following. Based
on the variational formulation proposed by Ponte Castañeda and
Suquet (1998), it is shown in Appendix A that an effective scalar re-
solved stress acting on each slip system s�s ðr; f Þ can be defined as a
function of the applied stress and the porosity level, such that:

s�s �
1

1� f
s2

s þ
2

45
fr2

eq þ
3

20
fr2

m

� �1
2

¼def:s�s 0 ð5Þ

where rm (resp. req) is the mean stress (resp. von Mises stress) of
the macroscopic stress tensor r. s�2s is expressed as a quadratic form
of r. Note that the notations used here for the overall yield func-
tions are different from those in Appendix A: Small letters are used
for the stress and strain quantities instead of capital letters, because
there is no reference any more to the micromechanical variational
analysis. Similar yield functions were obtained in the case of a
voided solid made of an isotropic von Mises matrix (Leblond
et al., 1994). The quadratic dependence in (5) is known to be inad-
equate in the case of plastic solids since the seminal works of Mc
Clintock (1968) and Rice and Tracey (1969). An exponential depen-
dence on the mean stress should be preferred. Using the second or-
der Taylor expansion of coshðxÞ ¼ 1þ 1

2 x2, other definitions of the
effective scalar resolved stress s�s can be proposed so that it better
corresponds to models derived from the Gurson (1977) model. Fol-
lowing the concept of a scalar stress measure (Besson et al., 2001),
which can be explicitly or implicitly defined, another expression for
s�s can be worked out from the following expression which takes
into account the mean stress dependence as in Gurson type models:

s2
s

s�2s
þ 2

45
f
r2

eq

s�2s

 !
þ 2f cosh

ffiffiffiffiffiffi
3

20

r
rm

s�s

 !
� 1� f 2 ¼def:s�s 0 ð6Þ

s�s is found by solving this equation. Another solution, based on the
recent development by Monchiet et al. (2007) would be to define s�s
based on the following equation:

s2
s

s�2s
þ 2f cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

20
r2

m

s�2s
þ 2

45
r2

eq

s�2s

s0
@

1
A� 1� f 2 ¼def:s�s 0 ð7Þ

In the following the Gurson-like formulation will be used (Eq. 6). It
is however well known that the original Gurson (1977) model could
not well represent the behaviour of actual voided cells as simulated
using finite element calculations (Brocks et al., 1995; Kuna and Sun,
1996 and Fritzen et al., 2012) so that empirical modifications have
to be introduced to better represent the cell behaviour (Tvergaard
and Needleman, 1984 and Faleskog et al., 1998). Accordingly, the
following definition for s�s is proposed:

s2
s

s�2s
þ a

2
45
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ffiffiffiffiffiffi
3
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ð8Þ

where a; q1 and q2 are parameters that need to be adjusted. q1 and
q2 play a similar role as in the work by Tvergaard and Needleman
(1984) whereas a is a new parameter weighting the relative contri-
bution of the resolved shear stress on each slip system and the usual
isotropic equivalent von Mises stress measure. The identification of
these parameters will be done in the following based on unit cell
simulations of voided single crystals. In all cases, s�s ¼ jssj for
f ¼ 0 so that the yield surface of the single crystal matrix is
retrieved.

For each slip system, the yield surface is then defined as:

w�s ¼ s�s � s0 ¼ 0 ð9Þ
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