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a b s t r a c t

The initial geometry of structures made of cables is steered by the cable tensioning forces. In a cable net
the geometrical shape and the internal force distribution cannot be dealt as separate issues: the set of
geometries defines also the feasible sets of the internal forces. During the last decades, many different
approaches have been proposed to deal with the form finding of cable structures. The most efficient
one is the so called Force Density Method (FDM), proposed by Schek, which allows to conforming cable
nets for structural applications without requiring any further assumption, neither on the geometry, nor
on the material properties. An Extension of the Force Density Method, the EFDM, makes it possible to set
conditions in terms of fixed nodal reactions or, in other words, to fix the position of a certain number of
nodes and, at the same time, to impose the intensity of the reaction forces. Through such an extension the
EFDM enables us to deal with form finding problems of cable nets subjected to given constraints and in
particular to treat mixed structures, made of cables and struts. In this paper we consider cable nets inter-
acting with members having flexural behaviour. For a given cable assembly and for a given loading con-
dition, aim of this work is to find that particular pretensioning system which replaces both the static and
the kinematic functions of the inner reactions of a flexural elastic continuous beam. It is, for instance, the
case of the bridge decks suspended by cables, shaped in various forms. The specialization of the EFDM to
this type of problem is presented and a progressive set of examples shows the efficiency and the versa-
tility of this approach in contributing to the design of new creative forms.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The initial geometry of the structures made of cables is steered
by the cable tensioning forces. In a cable net the geometrical shape
and the internal force distribution cannot be dealt as separate is-
sues, as it happens in the case of the conventional structures: the
set of geometries defines also the feasible sets of the internal
forces. In the Sixties, when the first lightweight structures of this
type were built, the only way to design cable nets was to resort
to the use of physical models. The cable net form, the cutting pat-
tern and the behaviour under external load were studied and mea-
sured through scale models and then assumed as basis for the
design. In the same years the first rational solutions of the form
finding problem were introduced. Barnes proposed a dynamical
relaxation method (Barnes, 1975). Argyris developed a FEM ap-
proach suitable to deal with prestressed cable nets (Argyris et al.,
1974). At the beginning of the Seventies, Linkwitz and Schek pro-
posed the so-called Force Density Method (Linkwitz and Schek,
1971; Schek, 1974), that allows to conform cable nets for structural

applications without requiring any further assumption, neither on
the geometry, nor on the material properties. In its linear version,
the final shape is defined through a special parametrization driven
by the force densities. Schek presents also a non linear Force Den-
sity Method, that allows to deal with constraints concerning im-
posed relative distances between the nodes, the tensile level in
the elements and/or their initial undeformed length. In this ap-
proach, the parametrization is not related to the nodes coordinates,
but to each truss element. As Descamps et al. (2011) clearly ob-
serve, there is no direct control on free nodes coordinates. This is
not a limit of the method, since it coherently assumes the nodes
as free variable, otherwise the search of the form would be devoid
of meaning. However, in dealing with systems in which it is neces-
sary to fix the position of some additional nodes and at the same
time to impose the value of the external force (as in the case of
structures having a flexible beam/girder suspended to a cable
net, or cable struts assemblies), many difficulties arise and the
drawbacks of the FDM are self evident. In dealing with cable struts
assemblies, Mollaert (1984) suggested an approach where the
compression members are replaced by external forces. Tibert
(1999) shows the possibility to overcame the drawnbacks by intro-
ducing virtual elements in order to satisfy the specific require-
ments. The use of virtual elements is proposed also in Descamps
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et al. (2011) in dealing with lightweight bridge structures. In this
last approach, the force densities in the virtual elements are grad-
ually modified until they reach the fixed node location through an
iterative procedure called Constrained Force Density Method. An-
other work that handles the geometrical position of some nodes
of the net is the one proposed by Morterolle et al. (2012), that
can be used to calculate geodesic tension trusses that ensure both
appropriate node positioning and uniform tension. Others contri-
butions in the force density field come from Miki and Kawaguchi
(2010), who reformulate the FDM in terms of functionals, on the
basis of variational principle.

In this paper, the aforementioned problems are not solved by
introducing virtual elements or virtual forces, but by proposing
the missing relation between the force densities and the quantities
related to the nodes. This is done through two steps: (1) computa-
tion of the reaction forces by using the same matrixes and vectors
of the original work proposed by Schek; (2) writing the additional
conditions in matricial form. This development can hence be ap-
plied in addition to the conditions posed by Schek (initial element
lengths, final element lengths, element forces). The paper therefore
extends coherently the operational capabilities of the original FDM,
that becomes suitable not only to control the quantities related to
the elements, but also the ones related to the nodes. The approach
proposed can be used both in dealing with cable-struts systems as
shown in Malerba et al. (2012) as well as in the case of structures
having a flexible beam/girder suspended to a cable net. With this
purpose, we consider cable nets interacting with members having
flexural behaviour. It is the case of the long span bridges, whose
deck girders are suspended at cables or supported by stays
(Fig. 1). Whether using suspending cables or curtains of stays,
the first design task concerns the setting of the initial configura-
tion, which, for bridges, means the deck girder has to be horizontal
or slightly cambered. Due to the interaction with the cables, a new
development of the form finding problem is set. In the simplest
view, cables or stays supply the static and the kinematic roles of
the inner supports of a continuous beam (Fig. 1). The attainment
of such a result requires a suitable pretensioning of the suspending
system. The pretensioning of the cables is the means used to assign
the initial configuration. In the case of stayed structures, for which
the tension hardening behaviour of the suspending system is cru-
cial, the pretensioning also provides the cables with the right stiff-
ness and makes them able to play the static role assumed at the
basis of these systems. In Sections 1 and 2 the FDM, in its linear
and non linear forms, and the EFDM are recalled. Section 3 presents
the specialization of the EFDM suitable to determine that particu-
lar pretensioning system which replaces the forces at the inner
supports of the girder beam. A set of examples will show the effi-
ciency and the accuracy of this approach in dealing with support-
ing cable curtains lying in a single plane, in two different planes or,
generically, in the space. The same examples contribute to show
the versatility of the method in helping the design of new original
and creative forms.

2. An outline of the Force Density Method

We refer to a cable net and assume that:

– the net is made of straight cable elements, connected at the
nodes. Part of the nodes is free, part of them is fixed;

– the net connectivity is known and its geometry is defined by the
nodal coordinates;

– the cable elements are weightless;
– the net is subjected to concentrated forces, applied at the nodes.

The net has n free nodes and nf fixed nodes, connected by m ele-
ments. The total number of nodes is ns ¼ nþ nf .

With reference to the ith node of a 3D net (Fig. 2), the equilib-
rium equations in the x,y,z directions are respectively:
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where Tij is the axial force and Lij is the length of the element be-
tween the nodes i and j:

Lij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xj
� �2 þ yi � yj

� �2 þ zi � zj
� �2

q
: ð2Þ

2.1. Matrix formulation

In order to set out the equilibrium equations into a matrix form,
the following vectors and matrices are introduced:

� xs; ys; zs; ns � 1½ �, coordinates of the free nodes. By numbering
the set of the fixed nodes after that of the free ones, the three
vectors can be partitioned into the following subvectors:
– x; y; z; n� 1½ �, coordinates of the free nodes;
– xf ; yf ; zf ; nf � 1

� �
, coordinates of the fixed nodes;

� fx; fy; fz; n� 1½ �, nodal forces;
� l; m� 1½ �, length of the elements; L ¼ diag lð Þ;
� t; m� 1½ �, axial forces in the elements.

We define also a connectivity matrix Cs, having dimensions
m� ns½ �, whose terms are:

cs eð Þ ¼
þ1 if i ¼ 1;
�1 if i ¼ 2;
0 in the other cases:

8><
>: e ¼ 1;2; . . . ;m ð3Þ

The difference between the couples of coordinates in the three
directions x,y,z, can be written as:

Fig. 2. Generical free node.

Fig. 1. Form finding of a cable suspending a flexible deck.
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