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This paper presents a method of superposition for the half-space Green’s functions of a generally aniso-
tropic material subjected to an interior point loading. The mathematical concept is based on the addition
of a complementary term to the Green’s function in an anisotropic infinite domain. With the two-dimen-
sional Fourier transformation, the complementary term is derived by solving the generalized Stroh eigen-
relation and satisfying the boundary conditions on the free surface with the use of Green’s functions in
the full-space case. The inverse Fourier transform leads to the contour integrals, which can be evaluated
with the application of Cauchy residue theorem. Application of the present results is made to obtain ana-
lytical expression for the orthotropic materials which were not reported previously. The closed-form
solutions for the transversely isotropic and isotropic materials derived directly from the solutions as
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being a special case are also given in this paper.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The elastic Green’s function for an anisotropic material provides
the fundamental solution for the anisotropic elastic theory. Green’s
functions represent a key quantity for the modeling of material
properties and the analysis of related elastic fields in inclusion
and dislocation problems of anisotropic materials. It is well known
that Green'’s functions can be obtained explicitly only for isotropic
and transversely isotropic materials. The three-dimensional
Green’s function for an anisotropic material is much more compli-
cated to obtain than the isotropic one; moreover, the half-space
Green'’s functions impose further difficulties on fulfilling the condi-
tions of free surface. Much effort has been devoted to deriving ex-
plicit expressions, approximate forms, or numerical evaluations of
Green’s functions and their derivatives.

For the half space Green's functions, the analyses are usually
based on either potential functions method or Fourier transform
method. By using the method of potential functions, the elastic
fields are expressed in terms of potential functions so that the
equilibrium equations are satisfied. The case due to a concentrated
force applied at an interior point of an isotropic half space has been
obtained by Mindlin (1936, 1953) using the Galerkin functions and
by Rongved (1955) using the Papkovich-Neuber displacements.
Pan and Chou (1979) gave explicit expressions of the half space
Green'’s function for a transversely isotropic material. As in the iso-
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tropic case, the solutions are obtained by superposing certain har-
monic and bi-harmonic functions so that all boundary condition
are satisfied. Lin et al. (1991) presents the response of a trans-
versely isotropic half space subjected to various distributions of
normal and tangential contact stresses on its surface also by using
the method of potential functions. The Fourier transform method
was used to solve mixed boundary value problem of Boussinesq
type for a generally anisotropic half space by Willis (1966, 1967)
and for a hexagonally aeolotropic elastic half space by Sneddon
(1992). The Green'’s function of a point force applied at the surface
of a semi-infinite generally anisotropic solid has been developed by
Barnett and Lothe (1975) using the Stroh formalism and Fourier
transform technique. Dealing with the half-space Green’s function
of a hexagonal continuum, Lee (1979) brought up with an idea by
decomposing it into the Green’s function in an infinite body and a
supplementary form to satisfy boundary conditions on the free sur-
face. The same technique was later used by Pan (2003) to examine
the Green’s function in an anisotropic half space with various
boundary conditions.

Following the superposing method by Lee (1979), the Green'’s
function due to a point force inside a generally anisotropic half
space is evaluated in this paper. Among them the explicit expres-
sions of three-dimensional Green’s functions of a point force in
an infinite generally anisotropic solid have been derived by Ting
and Lee (1997). The central problem for explicitly solving the
Green's function depends upon the roots, which is called the Stroh
eigenvalues, of a characteristic sextic algebraic equation. By using
two-dimensional Fourier transforms method and satisfying the


http://dx.doi.org/10.1016/j.ijsolstr.2013.03.024
mailto:vglee@ncnu.edu.tw
http://dx.doi.org/10.1016/j.ijsolstr.2013.03.024
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr

2408 V.-G. Lee/International Journal of Solids and Structures 50 (2013) 2407-2415

boundary conditions on the free surface, the supplementary term
is obtained in the form of generalized Stroh formalism also by
making use of Green’s functions for the infinite solids. Section 2
gives the concept of superposition method. The review of Green
functions for infinite domain of a general anisotropic material is gi-
ven in Section 3. The generalized Stroh eigenrelation formulation
and inverse algorithm for determination of the complementary
terms are presented in Section 4. For illustration purpose, the
method was used to obtain explicit expressions for the half space
Green’s functions for transversely isotropic materials in Section 5.
A special case is included when the loading is applied on the free
surface.

2. Basic formulation

Let a semi-infinite domain is defined so that the half space
occupies x3 > 0 and the origin of coordinates is taken at the
boundary of the half space. Consider the half space subjected to a
concentrated force in an interior point (0,0,h), the three-dimen-
sional elastic Green’s function formulation for a generally aniso-
tropic material will be discussed. The Green’s function should
satisfy the equations of equilibrium and traction free conditions
on the free surface as

Cij,<1GksJ1 =+ 513(5()(1)5()(2)5()(3 — h) = 07 X3 = 0., (21)

CisuGisi =0, (i,j,k,1=1,2,3) x3=0, (2.2)

where Gy, are the elastic moduli, é( ) is the Dirac delta function, d; is
the Kronecker delta, and a comma denotes differentiation. Lee
(1979) proposed that the Green’s function G for a half space can
be decomposed into two parts as

G=G"+G, (2.3)

where G™ is the Green’s function for the infinite space with a point
load applied at (0,0,h), and the complementary part G° should
satisfy

ij’dGis,jl = 07 X3 = 0., (24)

CisuGisy = —CisGry), X3 =0, (2.5)

3. The solutions of G*

We begin by introducing the three-dimensional elastic Green’s
function G due to a point load applied interior to a generally
anisotropic infinite medium. The detail discussion of the explicit
solutions can be found in Ting and Lee (1997) and Lee (2002). Here
we give a brief review of the fundamental formulation for the
Green'’s function G™. Assuming that a point load is applied at an
interior point (0,0, h) of an infinite domain, the equation of equilib-
rium can be written in the absence of body force as

Cij,dGijﬂ + 5,'55()(1)5()(2)5()(3 — h) = 0, x3 = 0. (3])

The Fourier transformations of G™ with respect to x;, X, and x3 are
defined by

~ . 1 el Bl 00 iy-X
Y= /,m L LG (et o s, 52

where X = (x1,X,x3) is the position vector, and y = (y1,¥2,y3) is the
transformed parameters. On taking Fourier transforms on (3.1),
we have

LG (y1,Y2.Y3) = (2m) 2 6eh, (3.3)

with the component Ly = Cjjy;y:. In spherical coordinate system, we
may choose

X, =rsin¢gcosh, x,=rsingsinh, x3 —h=rcosg, (3.4)

where the vector r = (x1,X,X3 — h) and r = |r|. In this notation, the 0
is measured on the plane x3 = h and ¢ = 0 is directing to the positive
X3 direction. Let n* and m* be any two mutually orthogonal unit vec-
tors on the oblique plane whose normal is the vector r, and we
choose n* and m* as

n* = (cos ¢ cosh,cos¢psinbd,—sing), m* = (—sind,cos0,0). (3.5)

The vectors [n*,m*,r] form a right-handed triad. Then, the applica-
tion of inverse transforms on (3.3) leads to (Synge, 1957; Barnett,
1972; Ting and Lee, 1997)

NS B S 1 [ T(p)

G =g [ T = g [ i(p) P 356)
where

I'(p)=Q +pR" +R7)+pT", (3.7)

* * gk L o e *
Qi = Cyuninj, Ry = Cyun;my, Ty

= Cyum;m; (3.8)

and I represents the adjoint matrix of I" (p). The determinant of
T'(p) can be written explicitly as |T'(p)| = [T*|f(p) and the vanishing
of the determinant |T'(p)| = 0 leads to a sextic equation in p, which
has six independent roots in general. With the condition of positive
definite 1Cyyezé > 0, it can be shown that the roots are complex
and are three pairs of complex conjugates as

f®) =@-p)@—p)®—DP3)P—DP1)P—D2)(P —D3)- (3.9)

Therefore, Eq. (3.9) can be decomposed in terms of the six roots as
with p,= o, +iB, (v=1,2,3) denotes the complex roots with a posi-
tive imaginary part, and the overbar is its complex conjugate. For a
general anisotropic material the Stroh eigenvalues p, of the sextic
Eq. (3.9) depends on the material constants and position vector
parameters. Ting and Lee (1997) examined the integral formula in
(3.6) and presented the explicit expressions of the Green’s function
for a general anisotropic material. The analytical solution of (3.6)
depends on the roots of the sextic algebraic equation. With Cauchy’s
theory of residues, the Green’s function can be expressed as

i -Tip)
G = y 2V 3.10
i T P ) 510
where f'(p,) = {df (p)/dp},_,,- The adjoint matrix I'(p) is a polyno-
mial in p of degree four. Let

(3.11)

where the real matrices I'™ are independent of p. With the expan-
sion of I'(p), the Green’s function can then be written as (Ting and
Lee, 1997)

1 & 1
00 _ (n) —
G (X) - 47U|T*| ;an 4TcrH[67 ¢]7 (312)

where ¢,, is shown in Appendix A. This is the explicit Green’s func-
tion expression in terms of the Stroh eigenvalues for any given
anisotropic material. Here we can see that the key step for solving
the three-dimensional elastic Green’s function of an anisotropic
material depends upon the roots p, (v=1,2,3) of a sextic equation
in (3.9). For generalized anisotropic materials, a sextic equation
cannot be solved analytically and only numerical solutions are pos-
sible. However, in materials with higher symmetry or with special
relations existing among material constants, the difficulty is re-
duced and analytical solution become possible. The most valuable
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