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a b s t r a c t

The interaction between dislocations and surfaces is usually characterized by image forces. Most analyt-
ical solutions to image forces could be found in literatures for two-dimensional (2D) solids with or with-
out the consideration of surface stress. This work provides alternative analytical formulations of image
forces for nanowires which are in more flexible forms compared with the infinite power series solutions
from complex variable method. Moreover, this work proposes analytical formulations of image forces for
nanorods (3D) by approximating the 3D shape effect as a height-dependent shape function, which is
obtained through curve fitting of the finite element results of image forces without surface stress. The
results of nanowires are demonstrated to be acceptable compared with the classical solution and com-
plex variable method. More importantly, the analytical formulation of nanorods has not been found in
other literatures so far. This work could contribute to nanostructure design and provide guidance for
the fabrication of high quality nanostructures.

Published by Elsevier Ltd.

1. Introduction

Dislocations in solids play an important role in determining the
mechanical and electronic properties of materials (Du and
Srolovitz, 2004; Liu et al., 2004; Luryi and Suhir, 1986; People
and Bean, 1985; Schwarz, 1999; Srinivasan et al., 2003; Zhong
and Zhu, 2008), due to the fact that the atoms of the dislocations
have different bonding and environment from the other atoms
buried in the bulk. More importantly, when the dislocation is
embedded in nanostructures with dimensions on the order of tens
of nanometers, the behavior of the dislocation becomes highly sen-
sitive to the surrounding environment because the atoms near the
dislocation will interact more actively in such extremely small do-
main. Generally, external loads, grain boundaries, inclusions and
surfaces/interfaces, etc. will affect the behavior of the dislocation.
This influence might be crucial in determining the way that the
dislocation behaves in nanostructures, thus it should be taken into
consideration in comprehensive studies.

Classical studies (Hirth and Lothe, 1982; Hull and Bacon, 2011)
showed that a fictitious image dislocation needs to be imposed to
enforce the stress-free surface boundary condition when a disloca-
tion is embedded in a semi-infinite solid. The image dislocation has
the same magnitude but opposite direction of the Burgers vector of
the original dislocation. Based on the concept of the image

dislocation, Dundurs and coworkers (Dundurs and Mura, 1964;
Dundurs and Sendeckyj, 1965) studied the elastic fields and image
forces with the consideration of the interaction between an edge
dislocation and a circular inclusion. Lubarda (2011) obtained the
stress fields for screw and edge dislocations emitted from a cylin-
drical void and provided analytical formulations for image forces
on dislocations. A different scheme to analyze the displacement
and strain fields of a screw dislocation in a nanowire is by using
gradient elasticity theory (Aifantis, 2003, 2009, 2011; Davoudi
et al., 2009, 2010; Shodja et al., 2008). They provide more complete
solutions for non-singular stresses and strains in dislocations
compared with the classical nonlocal approach (Eringen, 1977,
1984, 2001). It was employed to derive the solution to the image
force in an integral form on a screw dislocation near a flat interface
(Gutkin et al., 2000). The study of dislocations in gradient elasticity
theory was revisited and extended by Lazar and coworkers (Lazar
and Maugin, 2006; Lazar et al., 2006) to the second gradient elas-
ticity theory to analyze the stress and strain field of the edge or
screw dislocation. Another distinct approach to investigate image
forces acted on dislocations is through the complex variable
method or complex potential method (Muskhelishvili, 1977). This
approach is based on the analogy (Smith, 1968) between the
anti-plane strain deformation and the 2D perfect fluid motion, so
it is mainly used in 2D situations. Smith (1968) pioneered to study
the interaction between screw dislocations and circular cylindrical
inhomogeneities. By using conformal transformation techniques,
elliptical inclusions were considered by Stagni and Lizzio (1983)
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for the dislocation in the matrix and Warren (1983) for the disloca-
tion in the inclusion. Moreover, anisotropy was also taken into con-
sideration through Stroh’s formalism (Stroh, 1958) and image
forces on dislocations in anisotropic elastic half-spaces with a fixed
boundary was obtained by Ting and Barnett (1993). However, in
these mentioned formulations and many more, there is no intrinsic
length scale associated in these constitutive relationships. There-
fore, these results should be considered only in macroscopic cases.

In the past few decades, nanotechnology has been developed
rapidly and it discloses that the behaviors of nano-materials differ
from the conventional materials dramatically. Nanostructures have
at least one of its dimensions below tens of nanometers. Due to the
large surface to volume ratio, the surface stress begins to play an
important role in changing the constitutive laws seen in the classi-
cal elastic theory. In this case, nanostructures usually demonstrate
some size-dependent properties that could not be seen in
conventional materials. This significant difference could be critical
in fabrications and designs, so great efforts have been devoted to
investigating the effect of surface stress. Relationship of the
deformation-dependent surface energy with the surface stress
was first described by the Shuttleworth’s equation (Shuttleworth,
1950). Gurtin and coworkers (Gurtin and Ian Murdoch, 1975;
Gurtin et al., 1998) linked the surface stress to the bulk stress at
the vicinity of the surface by regarding the surface as a negligibly
thin object adhering to the underlying material without slipping.
Aifantis et al. (2007) adopted the strain gradient approach for
nucleation of misfit dislocations and plastic deformations in core/
shell nanowires. They also considered the interface contribution
to the gradient dependent potential energy of polycrystals in terms
of interfacial strain (Aifantis and Askes, 2007). Fang and Liu
(2006a,b) combined the surface stress model with complex
variable method to solve the image force for a screw or edge
dislocation located in materials of a circular nanowire embedded
in an infinite matrix. Luo and Xiao (2009) extended this analysis
to the case of an elliptical nanowire embedded in an infinite matrix
with conformal mappings. Recently, Ahmadzadeh-Bakhshayesh
et al. (2012) adopted the same method to analyze the surface/
interface effect on the image force of a screw dislocation in an
eccentric core–shell nanowire. However, these results based on
the complex variable method provide the results of image forces
as infinite power series, which are difficult to manipulate in further
situations. The influences of the size parameter and surface
elasticity are also hard to interpret clearly. Beside this limitation,
their solutions by using the complex variable method are limited
to 2D elastic plane stress or strain problems and mainly used for
isotropic materials.

2. General formulation of image force

The calculation of the image force mainly falls into two catego-
ries: the nonlocal approach and the energy approach. The ‘‘non-
local’’ concept was introduced by Kröner (1967) and followed by
Eringen (1977, 1984, 2001) to tackle the mathematical singularity
due to the discrete field of dislocations. In the nonlocal approach,
one can calculate the image force along the dislocation line using
the Peach–Koehler equation (Hirth and Lothe, 1982):

~f ¼ ðrNL �~bÞ �~n; ð1Þ

where~f is the image force density vector along the dislocation line,
rNL is the nonlocal stress exerted on the dislocation, and~n is the unit
vector along the direction of the dislocation line.

The nonlocal stress requires a volumetric integration of the
stress tensor over the whole crystal space (Kröner, 1967):

rNLð~xÞ ¼
Z

V
jð~x�~x0Þrð~x0ÞdV 0; ð2Þ

where jð~x�~x0Þ is a correlation kernel that links the local point (~x)
on the dislocation line to the nonlocal point (~x0) in the rest crystal
space.

The nonlocal stress rNL should be the sum of the contribution
from all other portions of the crystal to the dislocation, which
accounts for the long range effects from the free surfaces. Usually
a volumetric integration over the whole crystal space should be
calculated for rNL.

Recently, Colby et al. (2010) investigated the dislocation filter-
ing behavior in GaN nanodots by selective area growth through a
nanoporous template. This dislocation dissipation mechanism has
been studied numerically through finite element method based
on the nonlocal approach (Liang et al., 2010; Ye et al., 2012), in
which the surrounding surfaces are considered only as free
surfaces and the evaluation the nonlocal stress in Eq. (2) only
considers the largest contribution from the linear integral of the
stress part in the plane perpendicular to the dislocation.

The energy approach is based on the virtual work principle. In
mechanics, a general force is defined as the change of the total
energy relative to a general configuration coordinate change:

f ¼ � @W
@a

; ð3Þ

where @a can be seen as the change of the dislocation position in
this case, and W is the total energy stored in the solid.

Similar to the nonlocal approach, the calculation of the total
energy usually requires a volumetric integration of the energy
density over the whole crystal space. This is quite cumbersome
in most cases and it is often approximated as the same energy to
introduce the dislocation into the crystal (Ahmadzadeh-Bakhsha-
yesh et al., 2012; Dundurs and Mura, 1964; Dundurs and
Sendeckyj, 1965; Fang and Liu, 2006a, b; Luo and Xiao, 2009).
The approximation is carried out by evaluating the work done by
stresses on the cut surface of the dislocation to move the slip plane.
It could avoid the energy integration directly but somehow neglect
the stress contributions from other part of the material.

This work adopts the energy approach to formulate analytically
image forces on dislocations with surface stress in nanowires and
nanorods. First, the analytical stress and strain fields are derived
in case of isotropic circular nanowires. The results are fed into
the energy approach to obtain the analytical formulation of image
forces of nanowires. Second, this work proposes to study image
forces of nanorods by approximating the 3D shape effect as a
height-dependent shape function, which could be obtained
through curve fitting of the finite element data without surface
stress. This work provides explicitly analytical formulations of im-
age forces on dislocations in nanowires and nanorods with surface
stress. The results of nanowires are demonstrated to be acceptable
compared with the classical solution and complex variable meth-
od. More importantly, the analytical formulation of nanorods has
not been found in other literatures so far. This work could contrib-
ute to nanostructure design and provide guidance for the fabrica-
tion of high quality nanostructures.

3. Stress field

In Fig. 1, consider an elastic solid of domain (V) with an inclu-
sion (O) prescribed with an eigenstrain e�. The surface of the solid
is denoted by (S).

The constitutive relationship of the stress and the strain is:

rij ¼ Lijkl ekl � e�kl

� �
; ð4Þ

where Lijkl is the stiffness tensor of the material.
The strain is related to the displacement through compatibility

condition:
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