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Modeling of cortical bone adaptation in a rat ulna: Effect of frequency
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We employ a recently developed model for the adaptation of cortical bone in response to mechanical loading
to study the effect of loading frequency on the computed response, and we compare our results to previous
experimental measurements on rat ulnae. We represent the cortical bone as a poroelastic material with
orthotropic permeability. Bone adaptation in the model is related to a mechanical stimulus derived from
the dissipation energy of the poroelastic flow induced by deformation. We account for a non-locality in the
mechanotransduction of osteocytes present in the lacunae by using a “zone of influence.” Calculations are
done using the finite element method applied to a rat ulna whose geometry is obtained from micro-
computed tomography images. We show that the change in the second moment of inertia of the cross-
section increases non-linearly and saturates at higher frequency range. The numerical results are then com-
pared quantitatively to experimental data from the literature. Finally, we examine the role of local narrowing
of intramedullary canal in our specific ulna in the development of local irregularities in growth.

© 2011 Elsevier Inc. All rights reserved.

Introduction

Bone responds to mechanical stimulation through adaptation
[1–3], which is manifested internally in trabecular bone, and exter-
nally in cortical bone. Dynamic mechanical stimulus, usually applied
as cyclic loading, is essential for adaptation to occur [4–7]. Numerous
experimental studies have established that the adaptation response
varies with the magnitude of loading [6–8], time dependent parame-
ters such as frequency of loading [9], number of load cycles [5,8–10],
and bouts of loading [11,12]. In human cortical bone, adaptation be-
comes observable for loading frequencies greater than 0.5 Hz [13], in-
creases linearly with frequency in the 1 Hz–10 Hz range [9], after
which the adaptation response becomes saturated [10].

Our overarching goal has been to develop a numerical model to pre-
dict cortical bone adaptation, and in particular to account for the effect
of various loading parameters, discussed above, on the adaptation re-
sponse. In a previous article [14], we used the strain energy density as a
stimulus to trigger adaptation in themodel, and used it to examine the ef-
fect of the magnitude and temporal bouts of loading on the adaptation
behavior. As part of that work, we developed a numerical framework
that predicts the growth of cortical bone by first performing a finite ele-
ment analysis of the deformation within the bone, then computing the
mechanical stimulus, and finally using the stimulus to model the adapta-
tion of the cortical bone. However, the strain energy density cannot be
used to explain frequency response of bone adaptation, for example the

experimental observation that afixednumber of load cycles applied at in-
creasing frequencies produces a response that at first increases, then sat-
urates at some frequency. This phenomenon can be included by treating
the bone as a poroelastic material [15]. In a follow-up article [16], we in-
troduced a stimulus derived from the dissipation energy of the poroelas-
tic flow induced by deformation, and demonstrated the concept on a
cyclically loaded rectangular beam. The goal of the work described here
is to determine howwell the model with poroelastic material character-
ization can explain the results of frequency sensitivity in an animalmodel
by comparing our computed results with experimental data obtained
from the literature. To that end, we integrate the dissipation energy stim-
ulus into our numerical framework in order to simulate the effect of load-
ing frequency on the cortical bone adaptation. We demonstrate the
approach using the same rat ulna as in our previous study [14], and verify
that the dissipation energy based growthmodel predicts response that is
consistent with previous experimental observations of bone remodeling.
We note that this is not a validation of the model, which would require
extensive experimental measurements of fluid flow within the bone,
which is beyond the scope of the present work.

Load-induced fluid flow in cortical bone has been observed and
analyzed by a number of researchers, for example [17–21]. Fritton
andWeinbaum's extensive review [22] provides a comprehensive de-
scription of the fluid flow-induced mechanotransduction in cortical
bone. The trigger for mechanotransduction has been hypothesized
to be due to the load-induced fluid flow on the osteocytes [23–25].
It was found that the fluid shear stress and drag force on the osteocyte
process tethering fibers can amplify the macroscale strains by more
than 50 times [25]. The strain amplification factor was shown to
vary non-linearly with respect to loading frequency.
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This paper is organized as follows:wefirst describe briefly the imple-
mentation of the growth algorithm and the development of the dissipa-
tion energy based stimulus. The main contribution of this work is to
apply the growth algorithm with the dissipation energy stimulus to a
finite element model of an actual rat ulna, obtained from serial CT sec-
tions. We present the results for a baseline growth simulation, with pa-
rameters corresponding to experimental data [11], and compare
quantitatively the numerical results to these experimental measure-
ments, and interpret them in terms of cortical bone mechanotransduc-
tion. Finally, we examine the role of peculiarities in the geometry of
our specific bone in the development of local irregularities in growth.

Methods

The construction of the finite elementmesh, and the adaptation algo-
rithm were presented in detail in our previous work [14]. We therefore
include here only a brief description of the approach, in the interest of
making his article self-contained, and refer the interested reader to the
original work.

Finite element model and adaptation algorithm

We constructed a three-dimensional finite element mesh of the rat
ulna by developing a surface model using micro-CT images (obtained
with 10 μm resolution) of the ulna cross-sections, and employing the
commercial meshing software Hypermesh. The FE mesh, shown in
Fig. 1, consists of 62,782 nodes and 37,949 parabolic tetrahedral ele-
ments. The experimental conditions used by [11], where 9 N loading
at 2 Hz for 360 cycles was applied on the rat ulna in a single bout,
were used as the base case for the numerical model for calibration pur-
poses. The adaptation procedure was implemented by displacing the
surface nodes along the normal direction based on the following growth
law [26,27]:

dbi
dT

¼ A ϕi−ϕref

� �
; ϕi ≥ ϕref

0; otherwise

(
ð1Þ

where bi is the normal displacement of a node i (located on the surface
overwhich growth occurs), A is a proportionality constant,ϕi is the local
value of the stimulus, ϕref is the reference stimulus, and T is time of
growth. Since resorptionwas not observed in experiments [11], we spe-
cifically excluded it from the model. The adaptation algorithm started
with a poroelastic stress analysis on the FE model of the rat ulna. The
local values of the stimulus at the surface nodes were then computed,
and the surface nodes were displaced according to Eq. (1). A FE analysis
was performed on the updated model, and the cycle was continued
until convergence (i.e., the surface displacements are zero) or until a
specified number of growth time steps have been completed. The pro-
cedure is explained in detail in our earlier paper [14].

Development of the dissipation energy stimulus

Cortical bone has porosities at several different structural scales.
They include vascular (canal network), lacuno-canalicular, and
collagen-apatite porosities [15]. Osteocytes, which are housed in the
lacunae, have been shown to be responsible for mechanotransduction
in previous experimental and analytical studies. The load induced
fluid flow can occur at the canal network and the lacuno-canalicular

porosities [15]. These porosities are illustrated for mouse bones by
[28]. Rat ulna exhibits similar tortuous canal paths [29]. For simplici-
ty, we model the cortical bone as a homogenized poroelastic material,
with the poroelastic properties accounting for the canal network and
lacuno-canalicular porosities. The intramedullary canal, which is at a
higher scale, is treated as a source for fluid to move freely into and
out of the cortical bone.

The theory of poroelasticity is well known in the literature
[15,30–32], and we provide here just a short overview of poroelastic
fundamentals for clarity of exposition in the work that follows. We
treat the bone as a saturated poroelastic medium, whose deformation
is governed by the following pair of equations:

2Gεij ¼ σ ij−
ν

ν þ 1

� �
σ kkδij þ α

1−2ν
1þ ν

� �
pδij ; 2Gζ ¼ α

1−2ν
1þ ν

� �
σkk þ

3p
B

� �
:

ð2Þ

wherewe have introduced the following field variables: stress tensorσ,
strain tensor ε, pore pressure p, and the variation in fluid content ζ. The
material parameters are the shear modulus G, Poisson's ratio ν, the
Willis coefficient α, and Skempton's coefficient B. δij is the Kronecker
delta, and i,j=1,2,3 represent coordinate directions. The fluid mass
flow rate qi is computed from the pressure using Darcy's law,

qi ¼ −κ ij
∂p
∂xj

; ð3Þ

where κij is the orthotropic hydraulic permeability tensor (κij=kij/μ,
where kij is the orthotropic intrinsic permeability and μ is the dynamic
viscosity of the fluid). The mass flow rate is related to the fluid velocity
vi
fl as qi=ρflnpvifl, where ρfl is the density of the fluid and np is the

porosity.
Inserting the constitutive equations (Eq. (2)) and Darcy's law

(Eq. (3)) into the mass and momentum balance equations, and non-
dimensionalizing the length and time scales lead to the following equa-
tion for the evolution of the pore pressure:

∇�2 σkk þ
3
B
p

� �
¼ Fo

∂
∂T� σkk þ

3
B
p

� �
; ð4Þ

X⁎=x/d (d is a characteristic length), T⁎=ωt, and Fo=ωd2/c is the Fou-
rier number,which represents the ratio of the timescale for hydraulic dif-
fusion (d2/c) to the timescale of the applied load (1/ω). Here c is the
hydraulic diffusivity, which is proportional to the intrinsic permeability.

We choose as a characteristic measure of the growth stimulus the
dissipation potential of the viscous fluid flow φ, defined as,

φ ¼ −npv
fl⋅∇p ¼ 1

2
npv

fl
� �

⋅κ−1⋅ npv
fl

� �
; ð5Þ

where np is the porosity, vfl is the fluid velocity, and κ is the permeability
tensor [16]. The stimulus applied in the growth adaptation model is the
time integral over the timeperiod of loading of the dissipation potential.

We introduce a “zone of influence,” shown schematically in Fig. 2,
over which the stimulus is averaged, to model a non-local behavior.
This represents a collective contribution to growth from neighboring os-
teocytes, which can communicate through the processes inside the cana-
licular space. Thefinal formof the dissipation energy stimulus is given by:

φ ¼
∫V ∫t

0
1
2npv

fl⋅κ−1⋅npv
fldt

� �
f xk kð Þ dV

∫V f xk kð Þ dV
; ð6Þ

where V is the volume of the zone of influence, f is an influence function,
and t is the total timeperiodof loading. Following the results of our earlier
study [16], we defined f(‖x‖)=(‖x‖/R)3 e−11‖x‖/R, where R is a character-
istic length, in this case 0.8 mm, the approximate thickness of the ulna, in

Fig. 1. Finite elementmodel of the rat ulna consisting of 62,782 nodes and 37,979 parabolic
tetrahedral elements.
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