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Based on the expressions for the surface displacements due to concentrated vertical and tangential forces
acting on the free surface of a half-space, available from the well-known Boussinesq and Cerruti elasticity
problems, the surface displacements and the surface stresses are derived for a half-space loaded by the
vertical and tangential circular ring loads, or by uniform normal and radial shear stresses applied within a
circular or annular circular domains. By using different routes of integration, alternative forms of dis-
placement expressions are derived from the concentrated force results. Betti’s reciprocal theorem is used
to relate the displacements due to radial and vertical ring loads. The displacement and stress discontinu-
ities under these loads, or along the boundaries of the circular domains within which the uniform stress is
applied, are evaluated and discussed. The radial and circumferential components of stress are discontin-
uous under the load whenever the slope of the radial displacement is discontinuous under that load.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The present work was motivated by recent studies devoted to
the determination of the deformed shape of the surface of a soft
substrate due to deposited liquid drop (Pericet-Camara et al.,
2008; Yu and Zhao, 2009; Liu et al., 2009; Roman and Bico, 2010;
Olives, 2010; Das et al., 2011; Jerison et al., 2011; Lubarda and
Talke, 2011; Lubarda, 2012). If the solid substrate is sufficiently
soft, the distributed capillary force along the triple contact line be-
tween the solid/liquid/vapor phase, resulting from the surface ten-
sions and intermolecular interactions around the triple contact
(Fig. 1), can give rise to appreciable uplifting of the surface of the
substrate below the triple contact line. The formation of circular
ridges can have significant effects on the functioning of MEMS
and other micro/nano devices, lubrication of magnetic hard disks,
molten solder spreading in electronic packaging, etc. (Carré et al.,
1996). This was studied by using a linear elasticity theory by many
researchers, with the early contributions by Lester (1961) and
Rusanov (1975), followed by Fortes (1984), Shanahan (1988) and
Kern and Muller (1992). The elastic response in this problem is
characterized by the singularity of the vertical component of dis-
placement below the capillary force, assumed to be distributed
as a circular line load. The elasticity solution also predicts a discon-
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tinuous radial displacement under the vertical line load. To elimi-
nate this singularity, one approach is to distribute the capillary
force within a finite width, related to the actual thickness of the
interface liquid/vapor layer and the molecular interactions be-
tween a liquid drop and a solid substrate. This thickness may vary
from 1 nm for harder substrates to microns for softer rubber or gel
substrates (Lester, 1961; Rusanov, 1975; de Gennes, 1985; Yu and
Zhao, 2009), but is, in any case, much smaller than the radius R of
the contact circle (Fig. 1). Even though such procedure eliminates
the vertical displacement singularity, it does not eliminate the dis-
continuity in the slope of the radial displacement at the boundaries
of the annular circular region within which the capillary force is
distributed, and this gives rise to the discontinuity in both the
radial and circumferential stresses across these boundaries. The
effect of stress on the wetting angle was studied by Srolovitz and
Davis (2001), who found that elastic effects in solids are incapable
of modifying the wetting angle determined by interfacial tensions,
except in crack-like geometries. Recently, Style and Dufresne
(2012) examined the effect of the surface tension and the
elastocapillary length on the peak displacement under the load.
Marchand et al. (2012) determined the effective surface tension
from the elastic displacement field of a thin elastomeric wire
immersed in a liquid bath, observing experimentally an unex-
pected direction of the force transmission along the contact line.
The stress discontinuity also arises in the classical Love’s (1929)
problem of a semi-infinite solid loaded by a uniform pressure p
within a circular area, in which the radial and circumferential stress
discontinuities across the loading boundary are of magnitude p and
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Fig. 1. (a) A free-body diagram of a liquid drop. The liquid pressure is p;, the vapor pressure is p,,, and the liquid/vapor surface tension is a;,. (b) A self-equilibrated loading on
the surface of the substrate, consisting of pressure p = 2Kkay,, vertical line force V = g, sin 0 = Rk}, and the tangential (radial) line force T = &}, cos 0, where 0 is the Young’s
contact angle. The liquid/vapor surface tension is g;,. The mean curvature of the drop around the triple contact line of radius R is x.

2vp, respectively. See also Sneddon (1951) discussion of Terezawa
(1916) solution. In the case of uniform radial shear stress applied
within the circle of radius R, the slope of the radial displacement be-
comes infinite at the center (r = 0) and along the boundary r =R
which results in the stress singularities at these points as well. If
the shear stress is distributed within an annular region Ry <1 <R,
the singularity at the center is eliminated, but the stresses are still
singular along the circles r = Ry and r = R. In the limit as Ry — R, the
solution for the radial ring load is recovered, for which the radial
displacement and its slope, and thus the radial and circumferential
stresses, are all singular under the load, while the vertical displace-
ment is finite but discontinuous.

The solutions for some of the elasticity problems considered in
this paper have been previously constructed and reported in the
literature, e.g., Sneddon (1951), Timoshenko and Goodier (1970)
and Johnson (1985), or can be deduced from them by an appropri-
ate integration, but the stress and displacement discontinuities,
inherently imbedded in these solutions, were not fully discussed
or examined. Furthermore, the expressions for the surface dis-
placement and stress components for all loadings considered in
this paper are derived by using the results for the surface displace-
ments due to the concentrated vertical (Boussinesq) or tangential
(Cerruti) force only, without resorting to involved solutions of
the corresponding entire boundary value problems. Different
expressions for the displacement components due to vertical and
tangential ring loads are derived and discussed.

2. Surface displacement components due to concentrated force

For the later use in the paper, we list in this section the expres-
sions for the surface displacements in the well-known Boussinesq
and Cerruti concentrated force problems, and the surface displace-
ments from the surface doublet and quadruplet acting on the
boundary of an elastic half-space.

2.1. Boussinesq problem

In the Boussinesq elasticity problem, the displacement compo-
nents of the points of the bounding surface (z = 0) of a half-space,
due to the applied concentrated vertical force Q, are given by (e.g.,
Johnson, 1985, p. 50)
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where G is the elastic shear modulus and v is the Poisson ratio. The
in-plane Cartesian coordinates are (¢,#) and p is the radial distance
from the origin at which the force is applied. The radial displace-
ment is accordingly

_Q(1-2v)1
Y=""dc p @)

The nonvanishing surface strain components are
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Since ¢, = 0 away from the load, the corresponding surface stress
components are, from Hooke’s law, g, = —a, = 2Ge,.
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2.2. Cerruti problem

The displacement components due to the concentrated tangen-
tial force Q, are (Cerruti problem; Johnson, 1985, p. 69)
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The vertical displacement along the é-axis is singular and discontin-
uous at ¢ =0. The points ¢ > 0 are depressed (u, < 0), while the
points ¢ < 0 are elevated (u, > 0). Note that quZ =u¥, provided
that the magnitude of the compressive force (—Q,) is equal to the
magnitude of the shear Q;; cf. (1) and (4). It is recalled that in a
two-dimensional (plain-strain) version of the problem, the vertical
displacement due to tangential concentrated force is finite but dis-
continuous under the force, u, = —Q,(1 — 2v)sgn(x)/(4G). Likewise,
in a two-dimensional Flamant’s problem, the horizontal displace-
ment due to concentrated vertical force is u,=Q,(1—2v)
sgn(x)/(4G).

2.3. Surface doublet

Two co-linear tangential forces Q at small distance d constitute
a doublet of forces shown in Fig. 2(a). By superposition of results
from (4), the displacement components are
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