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a b s t r a c t

As a novel class of lightweight and reticulated structures, tensegrities have found a diversity of techno-
logically significant applications. In this paper, we theoretically investigate the self-equilibrium and
super-stability of rhombic truncated regular polyhedral (TRP) tensegrities. First, the analytical solutions
are derived individually for rhombic truncated tetrahedral, cubic, octahedral, dodecahedral, and icosahe-
dral tensegrities. Based on these solutions, we establish a unified analytical expression for rhombic TRP
tensegrities. Then the necessary and sufficient condition that ensures the existence of a self-equilibrated
and super-stable state is provided. The obtained solutions are helpful not only for the design of self-
equilibrated and super-stable tensegrities but also for their applications in biomechanics, civil and aero-
space engineering.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Tensegrity, a structure based on the complementary equilib-
rium of axial tension and compression, is perceived as a potential
solution to many practical problems (Skelton and de Oliveira,
2009). In nature, tensegrity can be considered as a generic principle
in organisms ranging from molecules (Luo et al., 2008; Morrison
et al., 2011), cells (Holst et al., 2010; Stamenovic and Ingber,
2009) to tissues (Maina, 2007). In industry, tensegrity has a variety
of important applications in, for instance, the development of ad-
vanced materials (Fraternali et al., 2012), novel civil architectures
(Rhode-Barbarigos et al., 2010; Yuan et al., 2007), smart structures
and systems (Ali and Smith, 2010; Moored et al., 2011), and
deployable devices for aerospace technology (Sultan, 2009).

In the design of a tensegrity structure, two key steps, among
others, are self-equilibrium and stability analyses to determine
the conditions under which the structure will be self-equilibrated
and stable, respectively (Zhang et al., 2012). The existing self-
equilibrium analysis methods can be generally classified into two
categories, analytical and numerical. Analytical approaches can
be used only for simple tensegrities with high symmetry (e.g.
Murakami and Nishimura, 2001; Zhang and Ohsaki, 2012), while
numerical methods are often invoked for relatively complicated
tensegrities (e.g. Estrada et al., 2006; Li et al., 2010b; Pagitz and
Tur, 2009). The criterion of super-stability provides a sufficient
condition for the stability of a tensegrity structure consisting of

conventional material elements with always positive axial stiffness
(Guest, 2011; Schenk et al., 2007; Zhang and Ohsaki, 2007). In the
present paper, only the static stability is considered, excluding the
instability problems caused by non-conservative disturbances. A
tensegrity structure is said to be super-stable if it is stable for
any level of force densities satisfying the self-equilibrium condi-
tions without causing element material failure (Connelly, 1999;
Juan and Tur, 2008). For the self-equilibrated and super-stable
tensegrities, increasing the level of force densities normally tend
to stiffen and stabilize them (Connelly and Back, 1998). This prop-
erty is important for the constructions and applications of
tensegrities.

In practice, a tensegrity structure is generally modelled as a set
of weightless axial compressive elements (called ‘bars’ or ‘struts’)
and tensile elements (‘strings’ or ‘cables’) connected by frictionless
spherical joints (Juan and Tur, 2008). One can construct tensegrit-
ies by assembling a certain number of elementary cells according
to certain design rules (Feng et al., 2010; Li et al., 2010a). Based
on the local configuration of each constituent elementary cell, Pugh
(1976) defined two major classes of tensegrities, called Z-based (or
zig-zag) structures and rhombic (or diamond) structures, respec-
tively (Feng et al., 2010). In the past decade, the self-equilibrium
and stability of some Z-based truncated regular polyhedral (TRP)
tensegrities have been investigated by using either analytical or
numerical methods (e.g. Koohestani, 2012; Li et al., 2010b;
Murakami and Nishimura, 2001, 2003; Pandia Raj and Guest,
2006; Zhang and Ohsaki, 2012). Recently Zhang et al. (2012) de-
rived a unified analytical solution for the self-equilibrium and
super-stability of all Z-based TRP tensegrities. In recognition to

0020-7683/$ - see front matter � 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.ijsolstr.2012.09.024

⇑ Corresponding author. Tel.: +86 10 62772934; fax: +86 10 62781824.
E-mail address: fengxq@tsinghua.edu.cn (X.-Q. Feng).

International Journal of Solids and Structures 50 (2013) 234–245

Contents lists available at SciVerse ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier .com/locate / i jsolst r

http://dx.doi.org/10.1016/j.ijsolstr.2012.09.024
mailto:fengxq@tsinghua.edu.cn
http://dx.doi.org/10.1016/j.ijsolstr.2012.09.024
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr


their important applications in, for instance, cytoskeleton (Ingber,
2010; Pirentis and Lazopoulos, 2010), the self-equilibrium and sta-
bility of rhombic expandable octahedron tensegrities have been
studied by some researchers (e.g. Lazopoulos, 2005; Xu and Luo,
2011; Zhang and Ohsaki, 2006). However, the properties of self-
equilibrium and super-stability of rhombic TPR tensegrities, an
important class of tensegrity structures of extensive interest, are
still unclear.

Therefore, the present study aims at exploring the self-
equilibrium and stability properties of rhombic TRP tensegrities.
The paper is organized as follows. In Section 2, the concepts of
Z-based TRP tensegrities and rhombic TRP tensegrities are briefly
reviewed. Section 3 gives the theoretical basis for the self-
equilibrium and super-stability of tensegrities. Sections 4 and 5
analyze, respectively, the self-equilibrium and super-stability of
rhombic truncated tetrahedral, cubic/octahedral, and dodecahe-
dral/icosahedral tensegrities. Section 6 establishes a unified
solution for the necessary and sufficient condition that ensures
the existence of self-equilibrated and super-stable states for all
types of rhombic TRP tensegrities.

2. TRP tensegrities

2.1. Z-based TRP tensegrities

To facilitate subsequent analysis, we refer to the following def-
inition of polyhedra (Coxeter, 1973):

Definition 1. A regular polyhedron can be uniquely identified by
the Schläfli symbol fn;mg, where n is the number of edges in each
face and m is the number of faces around each vertex.

In total, there are five types of convex regular polyhedra
(Cromwell, 1997), including tetrahedron identified by f3;3g, cube
f4;3g, octahedron f3;4g, dodecahedron f5;3g, and icosahedron
f3;5g, as shown in Fig. 1(a). By cutting off each vertex of these
regular polyhedra, one can obtain the five types of truncated
regular polyhedra, as shown in Fig. 1(b).

In a Z-based TRP tensegrity structure, each string corresponds
to an edge of the truncated regular polyhedron and the bars con-
nect the vertexes by following the rule of Z-shaped elementary
cells (Li et al., 2010a). For illustration, we take the construction
of a Z-based truncated tetrahedral tensegrity as an example. In
the first step, one truncates a tetrahedron by cutting all its original
vertices and creating a new polygonal facet around each vertex.
Fig. 2(a) shows the vertices and edges of the truncated tetrahedron.
Then, the strings and bars are added following the procedure pro-
posed by Li et al. (2010a). Fig. 2(b) illustrates the nodes, strings,
and bars of the tensegrity, where a Z-shaped cell, consisting of
the nodes 1–4, is highlighted. Fig. 1(c) gives the five types of
Z-based TRP tensegrities corresponding to the polyhedra in
Fig. 1(a) and the truncated polyhedra in Fig. 1(b).

2.2. Rhombic TRP tensegrities

A rhombic cell in self-equilibrated tensegrities has the similar
load-bearing feature as a Z-shaped cell (Feng et al., 2010), as shown
in Fig. 3. In both elements, the external forces should be applied in
a certain range of direction such that the bar is under compression
and the strings are under tension. In other words, the nodes 1 and 3
tend to approach each other while the nodes 2 and 4 tend to sep-
arate. Therefore, a rhombic tensegrity structure can be simply con-
structed from a Z-based tensegrity structure by simply replacing
all its Z-shaped cells with rhombic cells. For example, based on
the Z-based truncated tetrahedral tensegrity in Fig. 2(b), a rhombic
truncated tetrahedral tensegrity can be readily built, as shown in

Fig. 2(c). The Z-shaped cell highlighted in Fig. 2(b) has been re-
placed by the rhombic cell highlighted in Fig. 2(c).

However, it is emphasized that corresponding to the five types
of Z-based TRP tensegrities, there are only three different types of
rhombic TRP tensegrities for the following reasons. The rhombic
truncated cubic and octahedral tensegrities have the same num-
bers of bars, strings and nodes, and the connection relations be-
tween the elements and the nodes are also identical. This
indicates that both the topologies and connectivity matrices of a
rhombic truncated cubic tensegrity and a rhombic truncated octa-
hedral tensegrity can be expressed in the same form. Therefore, the
rhombic truncated cubic and octahedral tensegrities can be re-
garded as the same type. For the same reasons, the rhombic trun-
cated dodecahedral and icosahedral tensegrities can be
incorporated into one type. The structural topologies of the three
types of rhombic TRP tensegrities are shown in Fig. 4(a–c), which
will be referred to as rhombic tetrahedral, cubic/octahedral, and
dodecahedral/icosahedral tensegrities, respectively. According to
the topology, the strings in a rhombic TRP tensegrity structure
are classified into two types: type-1 and type-2. As can be seen
from Fig. 4, each three type-1 strings form a triangle in all rhombic
TRP tensegrities, while the type-2 strings form a triangle, a quad-
rangle, and a pentagon in rhombic truncated tetrahedral, cubic/
octahedral, or dodecahedral/icosahedral tensegrities, respectively.
A rhombic cell consists of one bar, two type-1 strings, and two
type-2 strings, as shown in Fig. 2(c).

Referring to the Schläfli symbol fn;mg for regular polyhedra, we
further find that for all rhombic TRP tensegrities, the number of
edges in a polygon consisting of type-1 strings, c, equals the smaller

Fig. 1. Polyhedra and Z-based tensegrities: (a) regular polyhedra, (b) truncated
regular polyhedra, and (c) Z-based TRP tensegrities.
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