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As a novel class of lightweight and reticulated structures, tensegrities have found a diversity of techno-
logically significant applications. In this paper, we theoretically investigate the self-equilibrium and
super-stability of rhombic truncated regular polyhedral (TRP) tensegrities. First, the analytical solutions
are derived individually for rhombic truncated tetrahedral, cubic, octahedral, dodecahedral, and icosahe-
dral tensegrities. Based on these solutions, we establish a unified analytical expression for rhombic TRP
tensegrities. Then the necessary and sufficient condition that ensures the existence of a self-equilibrated
and super-stable state is provided. The obtained solutions are helpful not only for the design of self-
equilibrated and super-stable tensegrities but also for their applications in biomechanics, civil and aero-

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Tensegrity, a structure based on the complementary equilib-
rium of axial tension and compression, is perceived as a potential
solution to many practical problems (Skelton and de Oliveira,
2009). In nature, tensegrity can be considered as a generic principle
in organisms ranging from molecules (Luo et al., 2008; Morrison
et al., 2011), cells (Holst et al.,, 2010; Stamenovic and Ingber,
2009) to tissues (Maina, 2007). In industry, tensegrity has a variety
of important applications in, for instance, the development of ad-
vanced materials (Fraternali et al., 2012), novel civil architectures
(Rhode-Barbarigos et al., 2010; Yuan et al., 2007), smart structures
and systems (Ali and Smith, 2010; Moored et al.,, 2011), and
deployable devices for aerospace technology (Sultan, 2009).

In the design of a tensegrity structure, two key steps, among
others, are self-equilibrium and stability analyses to determine
the conditions under which the structure will be self-equilibrated
and stable, respectively (Zhang et al., 2012). The existing self-
equilibrium analysis methods can be generally classified into two
categories, analytical and numerical. Analytical approaches can
be used only for simple tensegrities with high symmetry (e.g.
Murakami and Nishimura, 2001; Zhang and Ohsaki, 2012), while
numerical methods are often invoked for relatively complicated
tensegrities (e.g. Estrada et al., 2006; Li et al., 2010b; Pagitz and
Tur, 2009). The criterion of super-stability provides a sufficient
condition for the stability of a tensegrity structure consisting of
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conventional material elements with always positive axial stiffness
(Guest, 2011; Schenk et al., 2007; Zhang and Ohsaki, 2007). In the
present paper, only the static stability is considered, excluding the
instability problems caused by non-conservative disturbances. A
tensegrity structure is said to be super-stable if it is stable for
any level of force densities satisfying the self-equilibrium condi-
tions without causing element material failure (Connelly, 1999;
Juan and Tur, 2008). For the self-equilibrated and super-stable
tensegrities, increasing the level of force densities normally tend
to stiffen and stabilize them (Connelly and Back, 1998). This prop-
erty is important for the constructions and applications of
tensegrities.

In practice, a tensegrity structure is generally modelled as a set
of weightless axial compressive elements (called ‘bars’ or ‘struts’)
and tensile elements (‘strings’ or ‘cables’) connected by frictionless
spherical joints (Juan and Tur, 2008). One can construct tensegrit-
ies by assembling a certain number of elementary cells according
to certain design rules (Feng et al., 2010; Li et al., 2010a). Based
on the local configuration of each constituent elementary cell, Pugh
(1976) defined two major classes of tensegrities, called Z-based (or
zig-zag) structures and rhombic (or diamond) structures, respec-
tively (Feng et al., 2010). In the past decade, the self-equilibrium
and stability of some Z-based truncated regular polyhedral (TRP)
tensegrities have been investigated by using either analytical or
numerical methods (e.g. Koohestani, 2012; Li et al, 2010b;
Murakami and Nishimura, 2001, 2003; Pandia Raj and Guest,
2006; Zhang and Ohsaki, 2012). Recently Zhang et al. (2012) de-
rived a unified analytical solution for the self-equilibrium and
super-stability of all Z-based TRP tensegrities. In recognition to
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their important applications in, for instance, cytoskeleton (Ingber,
2010; Pirentis and Lazopoulos, 2010), the self-equilibrium and sta-
bility of rhombic expandable octahedron tensegrities have been
studied by some researchers (e.g. Lazopoulos, 2005; Xu and Luo,
2011; Zhang and Ohsaki, 2006). However, the properties of self-
equilibrium and super-stability of rhombic TPR tensegrities, an
important class of tensegrity structures of extensive interest, are
still unclear.

Therefore, the present study aims at exploring the self-
equilibrium and stability properties of rhombic TRP tensegrities.
The paper is organized as follows. In Section 2, the concepts of
Z-based TRP tensegrities and rhombic TRP tensegrities are briefly
reviewed. Section 3 gives the theoretical basis for the self-
equilibrium and super-stability of tensegrities. Sections 4 and 5
analyze, respectively, the self-equilibrium and super-stability of
rhombic truncated tetrahedral, cubic/octahedral, and dodecahe-
dral/icosahedral tensegrities. Section 6 establishes a unified
solution for the necessary and sufficient condition that ensures
the existence of self-equilibrated and super-stable states for all
types of rhombic TRP tensegrities.

2. TRP tensegrities
2.1. Z-based TRP tensegrities

To facilitate subsequent analysis, we refer to the following def-
inition of polyhedra (Coxeter, 1973):

Definition 1. A regular polyhedron can be uniquely identified by
the Schlafli symbol {n, m}, where n is the number of edges in each
face and m is the number of faces around each vertex.

In total, there are five types of convex regular polyhedra
(Cromwell, 1997), including tetrahedron identified by {3,3}, cube
{4,3}, octahedron {3,4}, dodecahedron {5,3}, and icosahedron
{3,5}, as shown in Fig. 1(a). By cutting off each vertex of these
regular polyhedra, one can obtain the five types of truncated
regular polyhedra, as shown in Fig. 1(b).

In a Z-based TRP tensegrity structure, each string corresponds
to an edge of the truncated regular polyhedron and the bars con-
nect the vertexes by following the rule of Z-shaped elementary
cells (Li et al., 2010a). For illustration, we take the construction
of a Z-based truncated tetrahedral tensegrity as an example. In
the first step, one truncates a tetrahedron by cutting all its original
vertices and creating a new polygonal facet around each vertex.
Fig. 2(a) shows the vertices and edges of the truncated tetrahedron.
Then, the strings and bars are added following the procedure pro-
posed by Li et al. (2010a). Fig. 2(b) illustrates the nodes, strings,
and bars of the tensegrity, where a Z-shaped cell, consisting of
the nodes 1-4, is highlighted. Fig. 1(c) gives the five types of
Z-based TRP tensegrities corresponding to the polyhedra in
Fig. 1(a) and the truncated polyhedra in Fig. 1(b).

2.2. Rhombic TRP tensegrities

A rhombic cell in self-equilibrated tensegrities has the similar
load-bearing feature as a Z-shaped cell (Feng et al., 2010), as shown
in Fig. 3. In both elements, the external forces should be applied in
a certain range of direction such that the bar is under compression
and the strings are under tension. In other words, the nodes 1 and 3
tend to approach each other while the nodes 2 and 4 tend to sep-
arate. Therefore, a rhombic tensegrity structure can be simply con-
structed from a Z-based tensegrity structure by simply replacing
all its Z-shaped cells with rhombic cells. For example, based on
the Z-based truncated tetrahedral tensegrity in Fig. 2(b), a rhombic
truncated tetrahedral tensegrity can be readily built, as shown in
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Fig. 1. Polyhedra and Z-based tensegrities: (a) regular polyhedra, (b) truncated
regular polyhedra, and (c) Z-based TRP tensegrities.

Fig. 2(c). The Z-shaped cell highlighted in Fig. 2(b) has been re-
placed by the rhombic cell highlighted in Fig. 2(c).

However, it is emphasized that corresponding to the five types
of Z-based TRP tensegrities, there are only three different types of
rhombic TRP tensegrities for the following reasons. The rhombic
truncated cubic and octahedral tensegrities have the same num-
bers of bars, strings and nodes, and the connection relations be-
tween the elements and the nodes are also identical. This
indicates that both the topologies and connectivity matrices of a
rhombic truncated cubic tensegrity and a rhombic truncated octa-
hedral tensegrity can be expressed in the same form. Therefore, the
rhombic truncated cubic and octahedral tensegrities can be re-
garded as the same type. For the same reasons, the rhombic trun-
cated dodecahedral and icosahedral tensegrities can be
incorporated into one type. The structural topologies of the three
types of rhombic TRP tensegrities are shown in Fig. 4(a-c), which
will be referred to as rhombic tetrahedral, cubic/octahedral, and
dodecahedral/icosahedral tensegrities, respectively. According to
the topology, the strings in a rhombic TRP tensegrity structure
are classified into two types: type-1 and type-2. As can be seen
from Fig. 4, each three type-1 strings form a triangle in all rhombic
TRP tensegrities, while the type-2 strings form a triangle, a quad-
rangle, and a pentagon in rhombic truncated tetrahedral, cubic/
octahedral, or dodecahedral/icosahedral tensegrities, respectively.
A rhombic cell consists of one bar, two type-1 strings, and two
type-2 strings, as shown in Fig. 2(c).

Referring to the Schlafli symbol {n, m} for regular polyhedra, we
further find that for all rhombic TRP tensegrities, the number of
edges in a polygon consisting of type-1 strings, ¢, equals the smaller
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