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a b s t r a c t

The pseudo-bistable phenomenon already shown to exist in the case of spherical domes is demonstrated
in pre-stressed composite panels. This new concept for morphing structures uses intrinsic material vis-
coelasticity to actuate the structure passively between its different states. A pseudo-bistable structure is
first snapped into a buckled state and allowed to relax under a constant strain. Once the actuation is
removed, the structure remains in its buckled configuration for a period of time, before quickly returning
to its initial state. In this paper, the principles of the pseudo-bistable behaviour are first outlined using a
discrete truss model. An equivalent numerical model is then used to show how the time-dependent
behaviour imparted to the structure can be controlled by the choice of the pre-straining boundary con-
ditions. Next, the effect of a composite layup on the pseudo-bistable behaviour is shown, and a volume
fraction limit is given. Finally, preliminary experimental results confirm the numerical simulations.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Morphing structures in the form of adaptive surfaces offer excit-
ing possibilities for aerospace applications. As opposed to compli-
cated hinged joints and heavy mechanisms, morphing structures
have the advantages of being lightweight, reliable, and containing
no moving parts (Thill et al., 2007; Sofla et al., 2010). Actuation
can be embedded into the structure, using actuators such as shape
memory alloys and piezoelectric patches (Georges et al., 2009). Re-
search on morphing structures has focused on composite materials
to take advantage of their high stiffness-to-mass ratios and their
long fatigue life. The intrinsic anisotropy of composite structures
was first exploited by Schultz and Hyer (2003) using unsymmetric
layups to produce bistable morphing structures. In their research,
piezoceramic actuators were used to trigger the transition from
one stable state to the other, and a Rayleigh–Ritz technique was
used to obtain the stable states. More recently, the Rayleigh–Ritz
method was employed by Pirrera et al. (2010) as a systematic ap-
proach to investigate the multistability of composite panels. The
concept of bistability has also been extended to other configura-
tions, such as pre-stressed bistable laminates (Daynes et al., 2008)
and zero-stiffness twisting structures (Lachenal et al., 2012).

In this paper we aim to develop a new concept of self-actuating
morphing structure using a combination of composite and visco-
elastic materials. In conventional bistable structures, bilateral
actuation is required to deform the structure from one state to
the other. In this concept, however, only unilateral actuation is

needed as the recovery of the structure to its initial state is self-
actuated. In its undeformed configuration, the panel is monostable,
and, after loading to its deformed state, the panel is allowed to re-
lax under constant strain. Material viscoelasticity causes a change
in the apparent stiffness of the structure, effectively causing the
transition to a bistable structure. When the load is removed, the
structure is able to remain in its second stable state for a deter-
mined period of time, before quickly snapping back to its original
configuration. We say that such a structure is pseudo-bistable.

Previous work has concentrated on isotropic domes to under-
stand the principles of pseudo-bistability (Santer, 2010; Brinkmeyer
et al., 2012). However, it has been demonstrated, for example by the
morphing scoop in Daynes et al. (2011), that double curvature is not
necessary to achieve a bistable system. Building on this framework,
the main objective of this research is to extend the pseudo-bistable
behaviour to pre-stressed composite panels. In this paper, we first
present the phenomenon of pseudo-bistability using a discrete mod-
el to explain its fundamental characteristics. Next, we show how the
numerical model parameters influence the characteristic recovery
time in the case of an isotropic panel. We then apply a composite lay-
up to the panel and demonstrate the effect of volume fraction and
layup asymmetry on the pseudo-bistable behaviour. Finally, the
numerical model results are validated with simple experiments.

2. A discrete model of pseudo-bistability

2.1. Model definition

We first use an example of a discrete structure to demonstrate
and define the principles of pseudo-bistability. Let us consider a
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modified form of the von Mises truss, which itself is a classic exam-
ple of a bistable structure with one degree-of-freedom.

In elastic bistable structures, the load–displacement curve is
independent of time and is generally characterised by three points
where the external load is zero (Fig. 1). Points 1 and 3 are associ-
ated with a locally positive slope and define the stable equilibrium
configuration of the structure. Point 1 is generally situated at the
origin and represents the initial undeformed structure (trivial solu-
tion). Finally, point 2 has a locally negative slope and is unstable.

The structure can be transitioned between the different stable
equilibrium configurations by applying an external force, so that
at a critical value of the load Pmax the structure snaps through,
and when the load is released settles at point 3. A load Pmin is
needed for the structure to snap back to its original shape at point
1.

We now consider the discrete truss model in Fig. 2. The truss
consists of two bars, connected by pin joints at the apex and at
the base. Standard linear solid springs (linear viscoelastic springs)
are introduced in the otherwise rigid bars (Lakes, 1999). Similarly,
torsional viscoelastic springs simulate an elastic foundation at the
base. The resulting linear and torsional spring stiffnesses at time t
are respectively named kLðtÞ and kTðtÞ. In addition, we will call: H,
the initial height of the structure; w, the half-width; and z, the
vertical displacement applied to point B. H and z are related to
the initial angle a0 and current angle a through

a0 ¼ tan�1 H
w

� �
; a ¼ tan�1 H � z

w

� �
: ð1Þ

Considering the equilibrium of the structure, the force in the bar AB
is given by

PAB ¼ �kLðL� L0Þ ¼ �kLw
1

cos a
� 1

cos a0

� �
: ð2Þ

Resolving vertically, the component of the reaction force from the
linear spring is

PL ¼ PAB sina ¼ �kLw tan a� sin a
cos a0

� �
: ð3Þ

Similarly, the component of the reaction force from the torsional
spring is

PT ¼ �
kT

w
ða� a0Þ: ð4Þ

Finally, using Eqs. (3) and (4), the total vertical reaction force
applied to the structure PðtÞ is given in terms of the angle a by:

PðtÞ ¼ �2 kLðtÞw tan a� sin a
cos a0

� �
þ kTðtÞ

w
ða� a0Þ

� �
: ð5Þ

The relaxation of the viscoelastic spring stiffnesses can be
modelled by the following Prony series,

kLðtÞ ¼ kLð0Þ 1�
XN

i¼1

kLi 1� e�t=si
� �" #

; ð6aÞ

kTðtÞ ¼ kTð0Þ 1�
XN

i¼1

kTi 1� e�t=si
� �" #

: ð6bÞ

where kLð0Þ and kTð0Þ are respectively the instantaneous linear and
torsional stiffnesses, kLi and kTi are respectively the linear and tor-
sional relaxation coefficients, and si are the relaxation times.

We also define k�ðtÞ as the ratio between the linear and the tor-
sional stiffness

k�ðtÞ ¼ kLðtÞ=kTðtÞ: ð7Þ

Finally, k�U is defined as the unrelaxed or instantaneous stiffness ra-
tio, and k�R the relaxed or long-term stiffness ratio. In a relaxation
test, i.e. applying an instantaneous strain to the structure and
letting the structure relax for a time trel, the apparent stiffnesses
decrease to kLð1Þ and kTð1Þ according to Eq. (6). Once the strain
is removed, the stiffnesses, if measured directly, would increase or
recover to the initial stiffnesses kLð0Þ and kTð0Þ. This is associated
with a recovery time trec. We assume that the recovery of the mate-
rial is the reciprocal of the relaxation, so

k�U ¼ k�ðtrel ¼ 0Þ ¼ k�ðtrec ¼ 1Þ; ð8aÞ

k�R ¼ k�ðtrel ¼ 1Þ ¼ k�ðtrec ¼ 0Þ: ð8bÞ

In the purely elastic case, it can be shown that by decreasing the
value of k�, the position of the second stable equilibrium (point 3
in Fig. 1) is altered and the absolute value of the snap-back load
Pmin decreased. By continuity, there exists a critical ratio k�crit where
the snap-back load Pmin becomes zero. At this point, the non-trivial
stable solution (point 3) disappears and the structure ceases to be
bistable—it snaps back to its initial shape.

2.2. Numerical example

To illustrate this behaviour, we apply the following values to Eq.
(5): w ¼ 50 mm; a0 ¼ 20� (which implies H ¼ 18:2 mm),
kL ¼ 10 N mm�1, and kT ¼ 410 N mm, and plot the load response
up to a maximum extension of zmax ¼ 35 mm. The Prony series is
defined in Table 1. Fig. 3a shows the evolution of the load–
displacement curve with time.

Fig. 1. Load–extension curve for a bistable structure. Points 1 and 3 are stable
equilibrium points, whilst point 2 is unstable.

Fig. 2. Discrete truss structure with standard linear solid (SLS) springs. The
torsional springs at the base also follow a SLS model but for clarity only the elastic
torsional spring is shown.

Table 1
Prony series modelling the behaviour of the standard linear solid springs.

Term kLi [–] kTi [–] si (s)

1 0.051 0.051 0.63
2 0.120 0.150 3.66
3 0.100 0.120 13.10
4 0.019 0.019 94.56

1034 A. Brinkmeyer et al. / International Journal of Solids and Structures 50 (2013) 1033–1043



Download English Version:

https://daneshyari.com/en/article/277993

Download Persian Version:

https://daneshyari.com/article/277993

Daneshyari.com

https://daneshyari.com/en/article/277993
https://daneshyari.com/article/277993
https://daneshyari.com

