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a b s t r a c t

An application of the Biot’s theory to the diffraction problem of plane harmonic dilatational waves
(P-waves) of the first kind and the second kind by a line crack or geometric discontinuity of finite width
embedded in a saturated two-phase medium is presented in this paper. The crack surfaces are assumed
impermeable, and the integral transform method is utilized to reduce the mixed boundary-value problem
to a single Fredholm integral equation. The magnitudes of the intensity of the stress fields near the crack
tips measured by Mode I dynamic stress-intensity factor (dimensionless) are computed and displayed
graphically against dimensionless circular frequency (x) for several dimensionless material property
values, namely, viscosity-to-permeability and mass density ratios. In the case of the normally incident
P-waves of the first kind, the results in terms of stress-intensity factor are also compared with the cor-
responding values of dry elastic material. All the stress-intensity factor curves are shown to exhibit a sim-
ilar character in that they rise to the peaks at certain frequency values and then decay with increasing
frequencies. At certain frequency ranges and material property values, amplification in the dynamic
stress-intensity factor can be substantially larger than those encountered in dry elastic materials. The
stress-intensity factor is found to be more affected by the changes in the ratio of viscosity-to-permeabil-
ity at lower mass density ratio. With fluid mass density 10% of the bulk mass density, the viscosity-
to-permeability ratio of 0.01 gives the highest increase of about 32% in the magnitude of stress-intensity
factor compared to the dry material counterpart value, while a decrease of about 9% is observed for the
viscosity-to-permeability ratio of 100. It is also found that change in mass density ratio has significant
effect upon the magnitude of stress-intensity factor at lower ratio of viscosity-to-permeability. As for
the normally incident P-waves of the second kind, the presence of the pore fluid affects both the magni-
tude and character of the stress-intensity factor. Large variations in the magnitude of stress-intensity
factor are observed as viscosity-to-permeability ratio changes from 1 to 100. At the ratio of viscosity-
to-permeability of 1.0, the stress-intensity factor curves increase gradually with frequency and exhibit
the peaks in curves for mass density ratio of 0.3 and higher. As the viscosity-to-permeability ratio is
raised to 100, the stress-intensity factor curves increase monotonically with frequency at a much faster
rate throughout the frequency range of interest (x = 0–2), and the change in mass density ratio is shown
to have little effect on the stress-intensity factor, especially within the low frequency ranges. The results
obtained in this study are useful in the mechanics of fracture initiation of saturated porous materials
under the fluctuating mechanical and/or pore fluid loadings that are periodic with time.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In dynamic fracture mechanics, the effects of fluctuating loads
on elastic medium weakened by flaws or crack-like defects have
been the focus of interest by many investigators, and the knowl-
edge of the stress field around the crack tips is known to play a
key role in determining the stability of the crack. On the other
hand, systematic study is still needed to understand as to how
the pore fluid and the fluctuating pore fluid loading can affect
the local stress filed in saturated porous medium containing crack.

Such knowledge can be practically important in many diversified
fields, ranging from geomechanics to biomechanics.

For steady-state problems involving diffraction of harmonic
waves by a finite crack in elastic medium, a considerable amount
of research work has been devoted to the topic. Loeber and Sih
(1968) provided the solution to the problem of diffraction of plane
harmonic horizontally polarized shear waves (SH-waves) by a line
crack of finite width, and presented a method of obtaining an
asymptotically near-field solution. The method involves the use
of the integral transform method to formulate the mixed boundary
value problem, and gives the results in term of an auxiliary func-
tion governed by a Fredholm integral equation of the second kind.
The same method was later extended by Sih and Loeber (1969a) to
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obtain the numerical results of an elastic medium with a line crack
or geometric discontinuity of finite width disturbed by the propa-
gation of plane harmonic P and SV-waves. Another attempt also
has been made by the same authors, Sih and Loeber (1969b), utiliz-
ing the Hankel integral transform to solve the axisymmetric prob-
lem of scattering of normal compression and radial shear waves at
a penny-shaped crack. A comprehensive review of the research
work on the topic can be found in their paper. Other elastodynamic
crack problems are also summarized by Sih (1968). Although most
of the studies on the topic have been progressed considerably, but
they are still limited to elastic medium with a single solid constit-
uent or dry elastic medium.

The purpose of this paper is to investigate the response of a sat-
urated porous elastic medium containing a line crack of finite
width under the propagating plane harmonic dilatational waves
(also referred to as compressional waves, or P-waves) of the first
kind and the second kind generated, respectively, by fluctuating
mechanical and/or pore fluid loadings. Of particular interest is
the influence of certain material properties, namely, mass density
of the fluid relative to bulk mass density and viscosity-to-perme-
ability ratio, upon the intensity of the stress fields in the vicinity
of the crack tips. The formulation of the problem is based on the
linear theory of Biot (1962) (also known as the Biot’s theory) which
takes into account the interdependence between the two constitu-
ents, i.e., fluid and solid skeleton, and is basically analogous to the
linear theory of coupled thermoelasticity as pointed out by Biot
(1956). Reference to the topic concerning the transient problem
of thermal loadings suddenly applied to the crack surfaces can be
made to the work of Kassir et al. (1986). The diffraction problem
of plane harmonic, dilatational and thermally induced thermoelas-
tic waves interrupted by a crack of finite width in an unbounded
elastic medium has been solved by Phurkhao and Kassir (1991).
They assumed that the crack surfaces are insulated, and formulated
the problem utilizing the integral transforms to reduce the prob-
lem to a single Fredholm integral equation of the second kind,
and then obtained the results in terms of the stress-intensity factor
ðk1Þ. Their solution method will be extended to solve a similar
problem relating to a fluid-saturated porous material in this paper.

In regard to embedded crack in an unbounded, saturated, porous
medium subjected to time dependent loadings, few problems have
been solved in the past. Craster and Atkinson (1996) have attempted
to find the asymptotic solution of the transient problem of finite
crack in a poroelastic medium using matched asymptotic expan-
sions and rescalings, but their solution is based on the quasi-static
theory of Biot (1941) in which all the inertia terms are neglected.
Additional references on the theory should also be made to the work
of Rice and Cleary (1976). In a recent paper, Jin and Zhong (2002) ob-
tained a transient solution of an axisymmetric problem of an imper-
meable penny-shaped crack embedded in an infinite porous solid
under the suddenly applied uniform traction over the crack sur-
faces. The problem of diffraction of harmonic dilatational wave of
the first kind incident upon a permeable circular crack in a saturated
poroelastic medium has also been treated by Galvin and Gurevich
(2007) using the Hankel transform to reduce the problem to a Fred-
holm integral equation. However, their concerns are not in the
stress field around the crack tips, and the response of the medium
under the incidence of the P- waves of the second kind has not been
investigated. To the best of the author’s knowledge, there are no
analytical solutions to the Biot’s general field equations of the dif-
fraction problem of plane harmonic dilatational waves obstructed
by a line crack of finite width within an unbounded medium.

Section 2 of this paper describes the basic equations governing
the wave propagation in the two-phase medium, and begins with
the introduction of the governing equations of motion of the bulk
material coupled with the diffusion equation of the fluid in the
non-dimensional space and time variables. The equations are then

decomposed into the dilatational and shear wave equations. Sec-
tion 3 considers two types of incident waves, namely, mechanically
induced P-waves of the first kind and the P-waves of the second
kind induced by the pore fluid pressure. Both input waves are trea-
ted separately in subsequent analysis to determine solutions of the
scattered wave fields. Section 4 deals with the formulation and the
determination of the scattered wave fields utilizing the integral
transform technique as outlined by Phurkhao and Kassir (1991)
to reduce the mixed boundary-value problem to a pair of dual inte-
gral equations whose solution is in turn governed by a Fredholm
integral equation of the second kind which is suitable for numeri-
cal work. Finally, numerical results of the two-phase medium com-
puted as the magnitude of dimensionless stress-intensity factors
are presented graphically in Section 5 for several values of mass
density and viscosity-to-permeability ratios. In the case of incident
P-waves of the first kind, the results are also compared with dry
material counterpart values over a range of dimensionless fre-
quency of interest.

2. Basic equations

Consider a through crack of finite width, 2a, embedded in an
infinite medium consisting of a porous elastic solid saturated by
a viscous fluid (two-phase material). With reference to the Carte-
sian coordinates ðx0; y0; z0Þ and time t0, it is assumed that the crack
is subjected to the plane harmonic waves propagating in the med-
ium in the x0y0-plane. In the absence of the body forces, the basic
equations governing the motion of the two-phase medium based
on the Biot’s theory (1962) are

s0ij;j ¼ q€u0i þ qf €w0i; ð1Þ

� p0;i ¼ qf €u0i þ
qf

f
€w0i þ

g
k

_w0i: ð2Þ

Here, u0j; j ¼ x; y; z denote the components of the displacement
vector u0 ¼ ðu0x; u0y; u0zÞ of the solid; w0j ¼ f ðU0j � u0jÞ; j ¼ x; y; z rep-
resent the components of the fluid displacement vector relative
to the solid portion w0 ¼ ðw0x; w0y; w0zÞ ¼ f ðU0 � u0Þ, with f being
the porosity of the medium. Also, qf ; q designate, respectively,
the mass density of the fluid and the bulk material, while, g; k
are the fluid viscosity and permeability (absolute) of the medium,
respectively. Moreover, a subscript comma is used to denote par-
tial differentiation, while a dot over a field variable indicates differ-
entiation with respect to the time variable. The total or bulk stress
components s0ij; ði; j ¼ x; y; zÞ and the pore pressure of the fluid p0

are related to the displacement components through the following
constitutive equations

s0ij ¼ 2le0ij þ dijke� dijap0; ð3Þ
p0 ¼ Mð�aeþ ef Þ; ð4Þ

in which, e0ij; ði; j ¼ x; y; zÞ denote the components of the strain ten-
sor, dij stands for the usual Kronecker delta symbol, and e designates
the dilatation of the solid skeleton, i.e.,

e0ij ¼ ðu0i;j þ u0j;iÞ=2; ð5Þ
e ¼ u0j;j ð6Þ

Moreover, the dilatation of the fluid portion measuring the var-
iation in the fluid content is given by

ef ¼ �w0j;j: ð7Þ

The constants a; M are, respectively, referred to as the Biot
coefficient and the Biot modulus. In addition, the shear modulus
of the bulk material is represented by l, and k is the Lame’s con-
stant of the bulk material under the constant pore pressure (or
open system)
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