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a b s t r a c t

In this paper, we develop a procedure for optimal topological design by sequentially inserting finite-sized
non-spherical inclusions or holes within a homogeneous domain. We propose a new criterion for topology
change that results in a trade-off problem to achieve the greatest/least change in the objective for the
least/greatest change in the size of the inclusion/hole respectively. We derive the material derivative of
the proposed objective, termed as the configurational derivative, that describes sensitivity of arbitrary
functionals to arbitrary motions of the inclusion/hole as well as the domain boundaries. We specifically
utilize the sensitivity to position, orientation and scaling of finite-sized heterogeneities to effect topolog-
ical design. We simplify the configurational derivative to the special case of infinitesimally small spherical
inclusions or holes and show that the developed derivative is a generalization of the classical topological
derivative. The computational implementation relies on B-spline isogeometric approximations. We dem-
onstrate, through a series of examples, optimal topology achieved through sequential insertion of a het-
erogeneity of fixed shape and optimization of its configuration (location, orientation and scale).

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Often in engineering practice, there is a need to perform opti-
mal topological design by placing finite-sized, regular-shaped geom-
etries within the structure. Classically, topological design of
structures is achieved by optimally distributing material in a fixed
region with known loading and boundary conditions (Bendsoe and
Sigmund, 2003). One commonly applied strategy for topology opti-
mization is to consider the material as having a varying density in
the range ½0;1�, which at the lower limit results in a void. Another
approach to topology optimization is through homogenization of
periodic media, where the microstructure at each point in the de-
sign space is optimized (Bendsoe and Sigmund, 2003). Shape opti-
mal design (see Pironneau, 1984; Bennett and Botkin, 1986), in
contrast to topology optimization, is concerned with determining
the optimal boundary shapes of (typically homogeneous) objects
that satisfy criteria such as minimum mass. Efforts at integrating
topology and shape optimization have often focused on automat-
ing the transition between them (see for example Lin and Chao,
2000; Tang and Chang, 2001; Ansola et al., 2002).

In practice, the efficiency of topology and shape optimal design
procedures is strongly dependent on the availability of analytically
derived domain and shape design sensitivities (Dems and Mroz,
1983, 1984; Haug et al., 1986; Sokolowski and Zolesio, 1992) and

their implementation in a finite element code. Therefore, the deri-
vation of these sensitivities is a critical aspect of topology and
shape optimal design.

Instead of topological design by distributing material optimally
within the domain, an alternative approach to effecting topological
modifications in the literature is by introducing infinitesimal holes
and subsequently optimizing their size and shape. In spirit, this ap-
proach resembles shape optimal design. The advantages of such an
approach include procedural unification of topology and shape
optimization, greater control over resulting topologies and shapes,
an ability to handle geometrical constraints imposed by manufac-
turing process, and smaller number of design variables leading to
greater computational efficiency.

In an early study, Eschenauer et al. (1994) developed the
‘‘bubble method,’’ in which the conditions for introducing an infin-
itesimal hole into the structure was derived. The hole was subse-
quently parameterized using NURBS basis functions, the
structure meshed using finite elements, analyzed, leading eventu-
ally to the optimized hole shape. This procedure was applied iter-
atively leading to a sequential procedure for topological
modification. More recently, the bubble method has been extended
as the ‘‘bubble-and-grain’’ method through conditions for intro-
duction planar, elliptical, infinitesimal inclusions for the strain en-
ergy density objective (Kobelev, 2010).

The generalization of the bubble method for introduction of
infinitesimal spherical holes in the domain is through the notion
of topological derivative (Sokolowski and Zochowski, 1999; Cea
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et al., 2000). The topological derivative is an estimate of the change
in shape functionals due to introduction of infinitesimal spherical
holes in the interior of the domain. To overcome the assumptions
on the nature of the cost functions and the boundary conditions
imposed on the introduced holes, an alternative definition of topo-
logical derivative corresponding to an expanding spherical hole in
the spirit of shape sensitivity analysis was introduced by Novotny
et al. (2003). In the limit when the hole radius asymptotically ap-
proached zero, the alternative definition of sensitivity led to the
usual definition of topological sensitivity as the sensitivity corre-
sponding to creation of a hole. Further, the topological derivative
has also been extended to introduction of infinitesimal ellipsoidal
inclusions (Cedio-Fengya et al., 1998; Nazarov and Sokolowski,
2003; Ammari and Kang, 2005; Amstutz, 2006).

In general, the topological derivative does not lend itself to
introduction and modification of finite-sized heterogeneities. There
are very few studies that appear to have explored the effect of
introducing finite-sized heterogeneities on arbitrary functionals de-
fined over the domain. In Gopalakrishnan and Suresh (2008), the
authors develop the notion of feature sensitivity wherein the effect
of introducing a finite-sized hole parameterized using a scalar fea-
ture (or scaling) parameter in the range [0,1] was estimated. The
feature sensitivity was then used to explore the impact of finite-
sized hole introduced at various locations within the domain, i.e.,
to enable ‘‘fast reanalysis.’’ The procedure also necessitated a solu-
tion to an exterior boundary value problem of a finite-sized hole
placed in an infinite domain.

Optimal topological design through introduction of finite-sized
inclusions or holes into homogeneous domains will in general re-
quire sensitivities of arbitrary functionals to changes in position, ori-
entation or scaling. Such sensitivities of arbitrary functionals appear
to be uncommon in the literature, and seem to have been explored
only in Dems and Mroz (1986) in the context of deriving conserva-
tion rules, or path independent integrals, within solids that are
homogeneous except for a crack or a void. Although such conserva-
tion rules have played a critical role in the field of fracture mechan-
ics (see for instance, Eshelby, 1956; Rice, 1968; Knowles and
Sternberg, 1972; Budiansky and Rice, 1973), the sensitivities of arbi-
trary functionals to translation, rotation and scaling do not appear
to have been heretofore exploited for optimal topological design.

Finally, from a numerical solution perspective, the need to re-
mesh domains with evolving inclusion/hole shapes remains a signif-
icant challenge. Therefore, numerical examples based on arbitrary
topological modifications effected by insertion and growth of an explic-
itly defined heterogeneity have been relatively few in the literature.

Based on the above survey of literature, the goal of this paper is
to demonstrate optimal topological design through insertion and
configuration of finite-sized holes and inclusions by

1. Identifying a criterion and its material time derivative that pro-
vides sensitivity to the configuration (location, orientation and
scale) of both ‘‘soft’’ as well as ‘‘stiff’’ finite-sized inclusions.

2. Showing that simplification of the material derivative to infini-
tesimal, spherical inclusions results in the classical topological
derivative.

3. Illustrating through a series of examples the approach to effect-
ing optimal topology by sequentially inserting, orienting and
scaling finite-sized inclusions and contrasting the resulting
optimal design to those obtained by placing infinitesimal
heterogenieties.

2. Configurational derivative and optimal location, orientation
and scaling conditions

In this section, we derive the necessary conditions to determine
the optimal configuration of an inclusion within a homogeneous

domain whose boundaries evolve in time. In particular, we permit
both the inclusion boundary as well as the underlying matrix
boundary to evolve. The optimal configuration of the inclusion is
determined by solving the problem described below.

2.1. The configuration optimization problem

Given a domain X we describe a ‘‘design transformation’’ that is
continuous with the pseudo ‘‘design time’’ t within the domain
such that

x ¼ x X; tð Þ ð1Þ

where X is initial position in the domain independent of time and X
denotes the configuration at any time instant t. Also, C denotes the
boundary of the domain X. We define Xt0 as the initial configura-
tion. As with X;Xt0 is assumed independent of time. Associated with
this design ‘‘deformation,’’ a ‘‘design velocity’’ may now be defined
as:

v x; tð Þ ¼ @x
@t

ð2Þ

We now generalize the above body by introducing a heteroge-
neity defined over Xp bounded by Cp (see Fig. 1) located at position
xp inside the domain X. We define an objective over this heteroge-
neous domain as:

f ðtÞ ¼
Z

X
wdX ð3Þ

where w � wðeðxðtÞÞ;xðtÞ; tÞ is the value of the design criterion at in-
stant t. Henceforth, we will suppress the arguments of w for ease of
reading. The corresponding quantity in the homogeneous domain is
w0. We associate with the inclusion and outside of it densities
qðxðtÞ; tÞ and q0ðxðtÞ; tÞ respectively. In other words, outside of the
inclusion, the density in the domain is the same as that in the
homogeneous domain. In general, we permit the inclusion to be
either ‘‘stiff’’ (q > q0 in Xp and w < w0 in X�Xp) or ‘‘soft’’ (q < q0

in Xp and w > w0 in X�Xp).
The goal of the configuration optimization problem is to opti-

mally determine the reference location xp of the inclusion, the ori-
entation np of a reference axis passing through xp, and a rotation h
about the reference axis as well as the inclusion shape to achieve
the greatest/least ‘‘effect’’ for the least/greatest change in mass of
a stiff/soft inclusion. Thus, we formally pose the configuration opti-
mization problem as the following trade-off optimization problem:
find xp;np; h and the optimized inclusion shape to

minimize gðtÞ ¼ �
Z

X
w� w0� �

dXþw
Z

X
q� q0� �

dX

Subject to
Z

X
e : C : eadX�

Z
C

t � uadC ¼ 0 ð4ÞZ
X
e0 : C0 : ea0dX�

Z
C

t0 � ua0dC ¼ 0

where the positive sign on the objective applies for a stiff inclusion,
and the negative sign for a soft inclusion; eaðxðtÞÞ and uaðxðtÞÞ are
compatible virtual strains and displacements respectively. Simi-
larly, ea0ðxðtÞÞ and ua0ðxðtÞÞ are corresponding virtual quantities in
the homogeneous domain; t and t0 are the tractions on the bound-
ary of the domains (assumed unchanging with time) with and with-
out the inclusion respectively. C and C0 are the fourth rank elasticity
tensors (assumed constant with time) in the inhomogeneous and
homogeneous domains. Implicit in the above statement is the fact
that on the portion of the boundary Cu where displacement bound-
ary conditions are applied, ua ¼ ua0 ¼ 0. Ct is the portion of bound-
ary where tractions are prescribed, and C ¼ Cu [ Ct . The body forces
are ignored in the constraints corresponding to the principle of vir-
tual work for convenience. We show that by imposing the virtual
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