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a b s t r a c t

The present paper deals with a homogenization technique based on the Transformation Field Analysis
(TFA) for the study of heterogeneous composite media characterized by nonlinear response. According
to the TFA, the behavior of the representative volume element (RVE) is studied accounting for the non-
linear effects by means of the presence of a uniform inelastic strain distribution in the nonlinear constit-
uent of the heterogeneous material. In order to improve the TFA, the assumption of uniformity of the
inelastic strain distribution is removed, so that a nonuniform inelastic strain field, better representing
the inelasticity distribution in the composite, is considered. In particular, the inelastic strain is repre-
sented as a piecewise linear combination of analytical functions of the spatial variable. The theory, pre-
sented in a general framework, can be successfully adopted for deriving the overall constitutive response
for a wide range of nonlinear composite materials. Furthermore, the procedure is tailored to investigate
the response of composites whose constituents are Shape Memory Alloys (SMA) and materials character-
ized by plastic behavior. Finally, numerical applications are developed in order to assess the effectiveness
of the proposed nonuniform TFA procedure, comparing the results with the ones carried out performing
Uniform and Piecewise Uniform TFA homogenizations and nonlinear finite element micromechanical
analyses.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The increasing use of composite materials for high performance
applications in several fields of structural engineering has brought
out the need for the development of efficient tools able to provide
suitable numerical predictions of their mechanical response.
Accordingly, numerous homogenization techniques, which allow
to estimate the mechanical properties of heterogeneous media
and to derive the overall behavior of the equivalent homogenized
material, have been developed. Many homogenization procedures
available in literature are based on various effective medium mod-
els such as the equivalent eigenstrain method proposed by Eshelby
(1957), the Mori and Tanaka approach (Mori and Tanaka, 1973),
which used the Eshelby solution, the self-consistent model of Hill
(1965), the variational approaches of Hashin and Shtrikman, lead-
ing to their well-known bounds (Hashin and Shtrikman, 1963),
which have been generalized by Willis (1977, 1983), among many
others.

All the mentioned homogenization techniques, initially formu-
lated to study the linear response of the heterogeneous material,
represent the basis for the development of suitable techniques able

to consider nonlinear material effects. Of course, the determination
of the mechanical behavior of a composite becomes a more com-
plex process, when its constituents are characterized by inelastic
phenomena.

A branch of homogenization has focused on the introduction of
rigorous bounds and estimates for the effective properties of non-
linear composites, using variational methods. Talbot and Willis
(1985) obtained rigorous bounds through the generalization to
nonlinear media of the Hashin–Shtrikman variational principle.
Ponte Casta~neda (1991) proposed an alternative variational struc-
ture able to generate bounds and estimates for nonlinear compos-
ites from the corresponding information of linear composites with
the same microstructural distribution, and he also provided esti-
mates exact to second order in the heterogeneity contrast (Ponte
Casta~neda, 1996). Lately, Agoras and Ponte Casta~neda (2011) ap-
plied the method proposed in Ponte Casta~neda (1991) to multi-
scale composites with viscoplastic isotropic constituents and ran-
dom sub-structures.

In order to accurately describe the response of a nonlinear het-
erogeneous medium, numerical techniques can be adopted to solve
the micromechanical problem. In fact, the finite element method or
the boundary element method, can be successfully adopted; on the
other hand, these numerical techniques involve a large number of
internal variables and, thus, lead to high computational burden.
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Simplified homogenization approaches have been proposed with
the aim of reducing the computational complexity of the numerical
micromechanical investigation.

The micromechanical method of cells (Aboudi, 1991), and later
its generalization (Aboudi, 1996), was proposed by Aboudi with
the aim of providing the overall behavior of periodic multiphase
materials of various types.

An interesting approach for solving the nonlinear microme-
chanical homogenization problem is the Transformation Field
Analysis (TFA), originally proposed by Dvorak (1992). It considers
the inelastic strain as a given eigenstrain, assuming the field of
internal variables to be uniform in each individual constituent
of the composite characterized by nonlinear behavior. The effect
of eigenstrains is accounted for by solving linear elasticity
problems and it is superimposed to the effect induced by uniform
overall strain. In particular, for two-phase composites the TFA
method is able to provide exact relations between the elastic strain
concentration tensors and the influence tensors due to the Levin-
Rosen-Hashin’s formula (Dvorak and Bahei-El-Din, 1997).

The TFA method was also improved by Dvorak et al. (1994)
through the subdivision of each material phase into several sub-
sets, developing a PieceWise Uniform TFA (PWUTFA). Consider-
ing a piecewise uniform inelastic strain distribution enables to
improve the description of the inelastic strain heterogeneities
but, obviously, at the expense of increasing the complexity of
the technique. However, it has been shown that the TFA and
PWUTFA techniques lead to too stiff predictions (Suquet, 1997).
Chaboche et al. (2001) also developed a PWUTFA in order to de-
rive the nonlinear behavior of damaging composites. In order to
better represent the complex field of the inelastic strain in the
representative volume element (RVE) of a nonlinear composite,
Michel and Suquet (2003) proposed a nonuniform TFA (NUTFA).
The inelastic strain field is considered as nonuniform and de-
scribed as the superposition of functions, called inelastic modes
and determined numerically by simulating the response of the
composite along monotone loading paths. The technique was
then implemented for the study of nonlinear composite materi-
als (Michel and Suquet, 2004). Lahellec and Suquet (2007) pro-
posed an alternative method for deriving the overall properties
of nonlinear inelastic composites based on the minimization of
an incremental energy function, within an implicit time-discret-
ization scheme; they proved that this approach is equivalent to
the transformation field analysis with a nonuniform eigenstrain
field (Michel and Suquet, 2003). Recently, the nonuniform TFA
model (Michel and Suquet, 2003) has been usefully applied by
Franciosi and Berbenni (2007, 2008) for modeling heterogeneous
crystal and poly-crystal plasticity, characterized by hierarchical
multi-laminate structures; by Roussette et al. (2009) for the
study of composites having elastic-viscoplastic and porous elas-
tic-viscoplastic constituents; by Fritzen and Böhlke (2011) for
the analysis of the morphological anisotropy of micro-heteroge-
neous materials with particle reinforcement; by Jiang et al.
(2011) for the analyses of nonlinear composite media made of
porous materials.

Marfia and Sacco (2005), Marfia (2005), and Sacco (2009)
developed TFA and PWUTFA homogenization procedures which
consider the periodicity conditions in order to investigate the
overall nonlinear response of the Shape Memory Alloy (SMA)
composites and masonry materials. Marfia and Sacco (2007) also
proposed a multiscale approach for SMA composite laminates
developing a nonlinear homogenization technique. Addessi
et al. (2010) have extended the PWUTFA technique to the Coss-
erat continuum to study the mechanical response of masonry.
Marfia and Sacco (2012) presented a PWUTFA homogenization
procedure for the multiscale analysis of periodic masonry,

assuming a bilinear approximation for the inelastic strain of
one subset of the unit cell.

Aim of the present paper is the development of a new homog-
enization technique for composite materials characterized by the
nonlinear behavior of their constituents in the framework of the
transformation field analysis. Following the proposal discussed in
Michel and Suquet (2003) and in Marfia and Sacco (2012), the field
of the internal variables is considered as nonuniform. The main
novelties of this work consist in the construction of an approxi-
mated nonuniform inelastic strain field in the RVE of the composite
medium and in the derivation of its evolutive problem. The RVE is
divided into subsets; in each subset a nonuniform distribution of
the inelastic strain, which accounts for all the nonlinear effects,
is adopted. In particular, the inelastic strain in each subset is as-
sumed as a linear combination of selected analytical functions,
called modes, which depend on the spatial variable. The coeffi-
cients of the linear combination are tensors and are determined
solving the evolutive problem. In particular, a new formulation is
proposed to compute the evolution of the coefficients of the
approximated form of the inelastic strain on the basis of the con-
tinuum evolutive equations.

In the present contribution numerical applications are devel-
oped considering different types of periodic composite materials.
In particular, plasticity and shape memory alloy models are imple-
mented in order to take into account the nonlinear phenomena
occurring in the material constituents of the examined composites.

In order to verify the efficiency of the developed procedure, the
numerical results obtained by the proposed nonuniform TFA
homogenization technique are compared with the ones carried
out adopting uniform and piecewise uniform TFA procedures and
nonlinear finite element micromechanical analyses.

The paper is organized as follows: Section 2 formulates the
problem of the homogenization for nonlinear composites; in Sec-
tion 3, the formulation of the proposed nonuniform TFA procedure
is presented; in Section 4, the developed nonuniform TFA is tai-
lored for plastic and SMA materials, illustrating the numerical pro-
cedure; Section 5 deals with the numerical applications.

2. Homogenization problem for nonlinear composites

The homogenization problem for composite media whose con-
stituents can be characterized by nonlinear response, is studied in
the framework of small strain theory. In particular, the interest is
devoted to inelastic phenomena induced by plasticity, damage, vis-
co-plasticity and other nonlinear effects.

The mathematical algebraic notations adopted in the following
are briefly introduced. Scalar variables are denoted in italics; vec-
tors, second-order tensors and fourth-order tensors in bold; scalar
product between vectors with symbol ‘� ’; scalar product between
two second-order tensors with symbol ‘:’; product between two
fourth-order tensors, a fourth-order tensor and a second-order ten-
sor, a second-order tensor and a vector (with the relative contrac-
tions of two indices, two indices and one index, respectively) with
no symbol.

A general representative volume element, able to retain the
properties of the heterogeneous medium characterized by nonlin-
ear behavior, is considered. In the following the typical RVE is de-
noted with the symbol X.

The constitutive relationships for the constituents of X are
formulated in a phenomenological thermodynamic framework
(Halphen and Nguyen, 1975). In fact, the existence of a thermody-
namic potential is postulated and a free specific energy function is
introduced through a convex potential as:

Wðe;p; T;VkÞ ¼ Weðe;p; TÞ þWpðp;Vk; TÞ; ð1Þ
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