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a b s t r a c t

A geometrically non-linear framework for micro-to-macro transitions is developed that accounts for the
effect of size at the microscopic scale. This is done by endowing the surfaces of the microscopic features
with their own (energetic) structure using the theory of surface elasticity. Following a standard first-
order ansatz on the microscopic motion in terms of the macroscopic deformation gradient, a Hill-type
averaging condition is used to link the two scales. The surface elasticity theory introduces two additional
microscopic length scales: the ratio of the bulk volume to the energetic surface area, and the ratio of the
surface and bulk Helmholtz energies. The influence of these microscopic length scales is elucidated via a
series of numerical examples performed using the finite element method.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The effective macroscopic properties of a heterogeneous mate-
rial can be estimated from the response of the underlying micro-
structure using homogenisation procedures. These mature
procedures need to be extended in certain situations (e.g. when
the microstructure contains nanoscale voids) to account for the
role of the surface at the microscale. A surface typically exhibits
properties different from those of the bulk. These differences,
caused by processes such as surface oxidation, ageing, coating,
atomic rearrangement and the termination of atomic bonds, are
present in comparatively thin boundary layers. Surface effects are
especially significant for nanostructures due to their large sur-
face-area-to-volume ratio. The objective of this contribution is to
present a novel micro-to-macro transition (computational homog-
enisation) procedure that accounts for the role of the surface at the
microscale. Possible applications would be a bulk material with
nanoparticles or a nanoporous structure.

The two main ingredients of the work presented here are (i)
continuum formulations that account for surface effects and (ii)
homogenisation as pioneered by Hill (1963). A brief review of these
topics is now given.

1.1. State-of-the-art review of continuum formulations which account
for surfaces

Two of the key approaches used to study the thermodynamics
of surfaces and interfaces are:

� the zero-thickness layer or Gibbs (geometrical) method
wherein a mathematical surface with zero thickness is intro-
duced to capture excess quantities on the surface (see e.g.
Gibbs, 1961);
� the finite-thickness layer method, which dates back to the work

of van der Waals in the late 19th century, wherein a layer of
finite thickness is employed in place of the interface.

The methodology adopted in this work is based upon the first
approach. The reader is referred to Guggenheim (1940) for further
details and a comparison of these two approaches.

Following the approach of Gibbs (1961), various models have
been proposed to endow the surface or interface with their own
distinct properties (see e.g Adam, 1941; Shuttleworth, 1950; Her-
ring, 1951; Orowan, 1970). A widely-adopted continuum model,
proposed by Gurtin and Murdoch (1975, 1978), gives the surface
its own tensorial stress measures (see e.g Cammarata, 1994;
Dingreville and Qu, 2005; He and Lilley, 2008; Duan et al., 2009,
for applications in nanomaterials). It is the Gurtin and Murdoch
model of surface elasticity that underpins the work presented in
this contribution.

Park et al. (2006, 2007) and Park and Klein (2008) developed an
alternative continuum framework based on the surface Cauchy–
Born model, an extension of the classical Cauchy–Born model to
include surface stresses.
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The thermodynamic fundamentals of surface science were re-
viewed in Rusanov (1996, 2005). Müller and Saul (2004) presented
a review on the importance of stress and strain effects on surface
physics. The role of stress at solid surfaces was critically examined
by Ibach (1997). Fischer et al. (2008) studied the role of surface
energy and surface stress in phase-transforming nanoparticles
and reported on the thermodynamics of a moving surface.

The effect of surface energetics for ellipsoidal inclusions and the
size-dependent elastic state of embedded inhomogeneities was
investigated by Sharma et al. (2003), Sharma and Ganti (2004)
and Sharma and Wheeler (2007). They utilised the classical formu-
lation of Eshelby (1951, 1957) for embedded inclusions and mod-
ified it by incorporating surface energies. Duan et al. (2005a)
extended the Eshelby formalism for inclusion/inhomogeneity
problems to the nanoscale. Effective mechanical and thermal prop-
erties of heterogeneous materials containing nano-inhomogenei-
ties based on the generalised Eshelby formalism are investigated
in Duan et al. (2005a,b) and Duan and Karihaloo (2007), see also re-
lated works (Benveniste and Miloh, 2001, Huang and Sun, 2007,
Fischer and Svoboda, 2010, Mogilevskaya et al., 2008, Lim et al.,
2006, He and Li, 2006, Mi and Kouris, 2006, Yvonnet et al., 2011).

Our own contributions include the development in Javili and
Steinmann (2009, 2010a) of a novel finite-element framework for
continua with energetic surfaces. The framework inherently ac-
counts for geometrical nonlinearities and surface anisotropy. The
theory of thermoelasticity at the nanoscale is elaborated upon in
Javili and Steinmann (2010b, 2011). A unifying review of various
approaches for accounting for surface, interface and curve energies
was presented in Javili et al. (2013).

A novel aspect of the work presented here is the development of
a geometrically non-linear homogenisation framework accounting
for surface energies at the microscale. To the best of the authors’
knowledge, neither the theoretical nor the numerical aspects of
the present problem have been studied previously.

1.2. State-of-the-art review of homogenisation

Homogenisation, as pioneered by Hill (1963, 1972), provides a
consistent methodology to link the macroscopic and microscopic
scales and forms the basis for computational micro-to-macro tran-
sitions (Suquet, 1987; Guedes and Kikuchi, 1990; Terada and Kiku-
chi, 1995; Smit et al., 1998; Miehe et al., 1999; Michel et al., 1999;
Feyel and Chaboche, 2000; Kouznetsova et al., 2001; Miehe, 2002;
Miehe and Koch, 2002; Temizer and Wriggers, 2008). Motivated by
the non-classical behaviour of continua at the nanoscale, the objec-
tive of this contribution is to present a novel computational micro-
to-macro transition framework for problems where the micro-
structure possesses surface structure. Within this framework, the
response of the macroscopic problem is governed by the standard
model of finite elasticity. The constitutive response of a macro-
scopic material point is obtained from the (numerical) solution of
a representative problem at the microscopic scale. The microscopic
problem contains surfaces possessing their own energetic
structure.2

The contribution of the energetic surface to the overall strength
of the microscopic representative volume element (RVE) depends on
two relative microscopic length scales. The first is the ratio of the
volume of the RVE to the area of the energetic surface. The second
is the ratio of the microscopic Helmholtz energies of the surface
and the bulk.

The macro- and microscopic problems satisfy the assumption of
scale separation. Nonetheless, the microscale problem possesses
two relative length scales. Thus, unlike the case where the micro-
structure contains no energetic surfaces, the magnitude of the rel-
ative length scales of the microscopic problem are important. The
energetic surface structure allows one to capture the phenomenon
whereby the strength of a specimen increases with decreasing size.
Standard micro-to-macro transition frameworks, i.e. where the
macro- and microstructures possess no enhanced continuum
description, can not capture this strengthening effect. This phe-
nomenon has been investigated numerically using surface elastic-
ity theory (see e.g. Wei et al., 2006; Kaptay, 2005; Javili and
Steinmann, 2009, 2010a), but not within a micro-to-macro transi-
tion framework as is done in this contribution.

Various alternative approaches have been proposed to capture
size effects within a micro-to-macro transition framework. In the
spirit of their pioneering work on capturing size effects using gra-
dient plasticity formulations (see e.g. Mülhaus and Aifantis, 1991;
Zbib and Aifantis, 1989) Zhu et al. (1997) used a unit-cell technique
to model size effects in metal matrix composites. Van der Sluis
et al. (1999) proposed a methodology to couple a micromorphic
macroscopic description (see e.g. Eringen, 1999, for an extensive
overview of micromorphic media) to an underlying classical con-
tinuum in order to describe heterogeneous polymers. Kouznetsova
et al. (2002) developed a micro-to-macro transition framework
that allows information on the higher-order kinematic fields to
be transferred to a microstructure described by a classical contin-
uum formulation. Geers et al. (2007) and Coenen et al. (2010)
investigated the response of macroscopic thin sheets with hetero-
geneous microstructure using second-order computational
homogenisation schemes (Geers et al., 2001; Kouznetsova et al.,
2002; Geers et al., 2003; Kouznetsova et al., 2004). The macro-
scopic response is described by a fourth-order shell theory. A sec-
ond-order computational homogenisation scheme is then required
to transfer the higher-order macroscopic kinematics to the micro-
scopic problem. The opposite approach was adopted by Hirschber-
ger et al. (2008) for material layers with a micromorphic
mesostructure. Further important contributions on the interpreta-
tion of micromorphic material using homogenisation and the
homogenisation of micromorphic microstructures have been
made by Forest (1998, 1999) and Forest et al. (2001). McBride
et al. (2012) developed a model for the computational homogeni-
sation of energetic macroscopic layers containing underlying
microstruture.

The influence of an interphase surrounding an inclusion was re-
cently investigated by Li et al. (2011) using a closed-form approach
based upon the model proposed by Mori and Tanaka (1973). The
results were compared against finite element computations where
the interphase was explicitly accounted for. The influences of size,
interphase thickness, and inclusion shape were all accurately pre-
dicted. The surface elasticity theory adopted here can predict the
same type of behaviour. In related work, Brisard et al. (2010) deter-
mined the Hashin–Shtrikman bounds on the shear modulus of a
nanocomposite containing spherical inclusions and also accounted
for the interface effects. Micro-to-macro transitions for coupled
consolidation problems in micro-heterogeneous porous media
have recently been considered by Su et al. (2011). Here the pore
pressure at the microscale plays an important role.

1.3. Structure of the manuscript

This manuscript is organised as follows. The notation and cer-
tain key concepts are briefly introduced. The standard finite elas-
ticity formulation governing the response of the macrostructure
is summarised in Section 2. Thereafter the response of the micro-
structure containing an energetic surface is given. The link

2 The label energetic denotes that the surface possesses mechanical and constitu-
tive structures. These structures are independent to those of the bulk. For an
extensive discussion on the choice of material parameters used to describe the
surface and their relation to those in the bulk, the reader is referred to Javili et al.
(2012b) and the references therein.
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