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a b s t r a c t

Quarter space problems have many useful applications wherever an edge is involved, and solution to the
related contact problem requires extension to the classical Hertz theory. However, theoretical explora-
tion of such a problem is limited, due to the complexity of the involved boundary conditions. The present
study proposes a novel numerical approach to compute the elastic field of two quarter spaces, joined so
that their top surfaces occupy the same plane, and indented by a rigid sphere with friction. In view of the
equivalent inclusion method, the joined quarter spaces may be converted to a homogeneous half space
with properly established eigenstrains, which are analyzed by our recent half space-inclusion solution
using a three-dimensional fast Fourier transform algorithm. Benchmarked with finite element analysis
the present method of solution demonstrates both accuracy and efficiency. A number of interesting para-
metric studies are also provided to illustrate the effects of material combinations, contact location and
friction coefficient showing the deviation of the solution from Hertz theory.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The Hertz theory of contact is based on the assumption of a
homogeneous half space. However, many engineering systems
such as rail/wheel contact, roller bearing contact or contact of
welded bodies pose a challenge to the extension of contact theories
for more complex considerations. The contact analyses for quarter
space related problems are of great importance in both theoretical
research and practical applications. Hetenyi (1970) employed an
iterative scheme to calculate the stress in an elastic quarter space
subjected to a concentrated normal load on its surface. The key to
this iterative scheme utilizes two overlapped symmetrically loaded
half spaces; numerical methods are employed to free the interfa-
cial plane from normal stress. A coupled pair of integral equations
with an unknown pressure can be derived from the two overlapped
half spaces. Keer et al. (1983) used the Fourier transform to solve
the integral equations and extended the solution approach to an
elastic quarter space subjected to tractions on its surface. Further-
more, Hanson and Keer (1990) used a direct method to solve the
integral equations, in which arbitrary loading could be considered.
Moreover, the contact behavior near the edge of a quarter space is
complex, and the edge effects arising from a quarter space during
contact were examined by numerical approaches (Hanson and

Keer, 1991, 1995; Hanson et al., 1994) or experiments (Chai and
Lawn, 2007; Gogotsi and Mudrik, 2009; Mohajerani and Spelt,
2010). On the other hand, the finite element method (FEM) was
employed by Bower et al. (1987) to analyze the plastic deformation
of a quarter space under rolling contact loads. The contents of the
above literature were limited to problems associated to a single
quarter space. The contact problems of two joined quarter spaces,
i.e., welded materials, were not involved. A quarter space can be
treated as a special case of two joined quarter spaces, by setting
Young’s modulus of one of the materials to be zero.

The present analysis uses the equivalent inclusion method
(EIM) originally proposed by Eshelby (1957) to investigate the con-
tact between a rigid sphere and two joined quarter spaces. One of
them is regarded as an inhomogeneity, which is treated by an
equivalent inclusion of the same material constants as the other
(cf. Eshelby (1957) and Mura (1993)) but with proper eigenstrain
distribution. The entire displacement or stress fields are obtained
by the superposition of the homogeneous half space solutions
and the disturbed solutions due to the equivalent eigenstrains. In
numerical procedure, contact pressure is approximated as piece-
wise constant over rectangular patches. The homogeneous half
space solutions for the elastic displacements or stresses caused
by the uniform pressure distributed on a rectangular area were ob-
tained by Love (1929), Johnson (1985), Kalker (1986), Ahmadi et al.
(1987), Hills et al. (1993), Liu and Wang (2002).

In the proposed modeling, analytical solutions for inclusions
can be obtained following the direction of many known works,
such as those for the elastic fields in a half space caused by
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spherical thermal inclusions (Mindlin and Cheng, 1950b), ellipsoi-
dal inclusions (Seo and Mura, 1979), or cuboid inclusions (Chiu,
1978). Note that the eigenstrains given in the above references
were assumed to be uniform. On the other hand, numerical ap-
proaches built upon these elementary solutions can make the anal-
ysis applicable to more general cases. The elastic fields due to
eigenstrains can be expressed in terms of Galerkin vectors (Mindlin
and Cheng, 1950a), where the basic Galerkin vectors in a half space
were derived by Yu and Sanday (1991a,b). Based on the Galerkin
vectors, Liu and Wang (2005) initiated the study of the stress fields
due to eigenstrains in a half space; the full set of analytical solu-
tions for the displacements and stresses were achieved in Liu
et al. (2012). Furthermore, Liu et al. (2012) derived the influence
coefficients in explicit closed-form for numerical implementation,
when the computational domain is divided into a number of ele-
mentary cuboids with uniform eigenstrains. The resultant elastic
field caused by all such eigenstrains was the sum of solutions con-
tributed by each individual inclusion, where the computation high-
lights a seamless implementation of the three-dimensional fast
Fourier transform (FFT) algorithms (Liu et al., 2000). The current
work relies heavily on this method to accelerate the calculation.

The equivalent eigenstrains chosen to replace the inhomogene-
ities need to be determined in advance. Recently, Chen et al. (2010)
and Zhou et al. (2011a,b) used the Conjugate Gradient Method
(CGM) to solve the equivalent eigenstrains. Chen et al. (2010) used
this method to analyze the elasto-plastic contact on a layered half
space. In their model, the layered material was treated as an inho-
mogeneity. Furthermore, the contact problems of a single inhomo-
geneity or a stringer of inhomogeneities in a half space subjected to
an indentation was investigated by Zhou et al. (2011a). On the
other hand, spherical inhomogeneities (Leroux et al., 2010) and
cylindrical inhomogeneities (Leroux and Nélias, 2011) were also
investigated. However in their numerical approach, the methods
used to solve the disturbed solutions due to eigenstrains were
based on Zhou et al. (2009), which is an approximate method pos-
sessing difficulties in numerical error control. The computational

domain needs to be extended significantly and the surface mesh
should be fine enough to capture accurately the disturbance
behavior of near surface inclusions. However, when a fine surface
mesh is used, such an indirect method would experience extra dif-
ficulties in developing explicit relations between the redundant
surface traction and the unknown eigenstrain. The present contact
analysis of the two joined quarter spaces model is based on the EIM
theories employing the explicit solutions of the eigenstress and the
influence coefficients developed by Liu et al. (2012), which, in
contrast, have circumvented the above mentioned numerical
difficulties.

2. Theoretical description

2.1. Equivalent inclusion method for joined quarter spaces

The contact model for a rigid sphere indenting two joined quar-
ter spaces is shown schematically in Fig. 1. The two quarter spaces,
denoted as region 1 and region 2 with different material properties,
are perfectly ‘‘welded’’ together. Region 2 can be treated as an
inhomogeneity (denoted by X) with respect to the region 1. When
the two joined quarter spaces are subject to an external load,
elastic fields will be disturbed by the inhomogeneity. The inhomo-
geneity can be replaced by an inclusion using properly chosen
eigenstrains (Eshelby, 1957). This method is called equivalent
inclusion method (EIM). The stress field of the two joined quarter
spaces, shown in Fig. 2 (a), can be express as follows, using Hooke’s
law,

rij ¼ C�ijkl e0
kl þ ~ekl

� �
¼ Cijkl e0

kl þ ~ekl � e�kl

� �
in X ð1aÞ

rij ¼ Cijkl e0
kl þ ~ekl

� �
in D�X ð1bÞ

where Cijkl and C�ijkl denote the elastic moduli of the matrix (D �X)
and inhomogeneity (X), respectively; e0

klis the homogeneous (i.e. in
the absence of material inhomogeneity) contact solution caused by
the surface pressure; and ~ekl is the perturbed strain caused by the

Nomenclature

a Hertzian contact radius, mm
Cijkl;C

�
ijkl elastic moduli for the matrix and inhomogeneity,

respectively, MPa
Cuz

p ;C
uz
qx
;Cuz

qy
the influent coefficients of pressure-displacement

and shear traction-displacement
E1 Young’s modulus for region 1, GPa
E2 Young’s modulus for region 2, GPa
F Galerkin vectors
g surface gap, mm
h0 body separation between two surfaces, mm
I unit matrix
M, N, L grid numbers along x, y and z directions, respectively
My moment about the y-axis, N �mm
p pressure, MPa
ph maximum Hertzian pressure, MPa
qx,qy shear tractions parallel to the x, y direction, respectively,

MPa
R sphere radius, mm
Tð0Þijkl; T

ð1Þ
ijkl; T

ð2Þ
ijkl; T

ð3Þ
ijkl influence coefficients relating eigenstrain to

stress
uz surface displacements in the z direction, uz ¼ ue

z þ ~uz,
where ue

z and ~uz denote half space solution and dis-
turbed solution due to inhomogeneity, respectively, mm

W applied normal load, N
x, y, z space coordinates, mm

x0,x vectors of the source point and target point, respectively
dz rigid displacement in the z direction, mm
dij Kronecker delta
Dx,Dy,Dz grid sizes of x, y and z directions respectively, mm
e0

ij initial strain
~eij perturbed strain caused by inhomogeneity
e�ij eigenstrain
lf friction coefficient
m1 Poisson’s ratio for the body 1
m2 Poisson’s ratio for the body 2
rij stress, MPa
r0

ij stress due to pressure and shear tractions, MPa
r�ij eigenstress due to eigenstrain, MPa
l shear modulus, MPa
X domain of inhomogeneity

Special symbols
⁄ convolution
: tensor contraction between a fourth-rank tensor and a

second-rank tensor
Tilde(�) or FT the Fourier transform
IFFT inverse discrete fast Fourier transform

Subscripts
1, 2 left and right quarter spaces, respectively
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