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a b s t r a c t

In this paper, a new semi-analytical method is presented for modeling of three-dimensional (3D)
elastostatic problems. For this purpose, the domain boundary of the problem is discretized by specific
subparametric elements, in which higher-order Chebyshev mapping functions as well as special shape
functions are used. For the shape functions, the property of Kronecker Delta is satisfied for displacement
function and its derivatives, simultaneously. Furthermore, the first derivatives of shape functions are
assigned to zero at any given node. Employing the weighted residual method and implementing
Clenshaw–Curtis quadrature, coefficient matrices of equations’ system are converted into diagonal ones,
which results in a set of decoupled ordinary differential equations for solving the whole system. In other
words, the governing differential equation for each degree of freedom (DOF) becomes independent from
other DOFs of the domain. To evaluate the efficiency and accuracy of the proposed method, which is
called Decoupled Scaled Boundary Finite Element Method (DSBFEM), four benchmark problems of 3D
elastostatics are examined using a few numbers of DOFs. The numerical results of the DSBFEM present
very good agreement with the results of available analytical solutions.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Numerical approaches are usually employed to solve
elastostatic problems for analysis and design purposes. Various
types of numerical approaches such as Finite Element Method
(FEM), Boundary Element Method (BEM), and Scaled Boundary
Finite Element Method (SBFEM), are commonly used to solve
two- and three-dimensional (2D and 3D) elastostatic problems.

The use of the FEM is popular since its procedures are
well-established and versatile in nature (see for example, Gan
et al. (2005), Papanicolopulos et al. (2009), Rashid and Selimotic
(2006), and Zienkiewicz and Taylor (2000), among others for
solving 3D problems).

The BEM principally requires reduced surface discretizations,
and may be regarded as an appealing alternative to the FEM for
elastostatic problems (see for example, Banerjee and Henry
(1992), Chen and Lin (2010), Cruse (1969), Denda and Wang
(2009), Masters and Ye (2004), Milroy et al. (1997), Mittelstedt
and Becker (2006), Pan and Yuan (2000), Turco and Aristodemo
(1998), Wang and Denda (2007), and Wu and Stern (1991), for
3D problems). As the BEM requires no domain discretization, fewer
unknowns are needed to be stored. The BEM needs a fundamental
solution for the governing differential equation in order to derive

the boundary integral equation. This means that the BEM requires
fundamental solutions that are dependent on the problem of inter-
est. Although coefficient matrices of the BEM are much smaller
than those of the FEM, they are usually fully-populated, non-sym-
metric, and non-positive definite.

Combining the advantages of the BEM and the FEM, the SBFEM
has been successfully developed by Wolf (2004). By transforming
the governing partial differential equations to ordinary differential
equations, the SBFEM discretizes only the domain boundary of
interest with surface finite elements. The SBFEM, which does not
require any fundamental solution as for the BEM, has also been
used for the analysis of 3D elastostatic problems (see Doherty
and Deeks (2003) and Song (2004) among others).

In addition to the above-mentioned numerical methods, some
other analytical and semi-analytical methods have been presented
to solve the 3D elastostatic problems. Gao and Rowlands (2000)
have developed a new hybrid experimental-analytical/numerical
method for stress analysis of finite 3D elastostatics problems. Li
and Fan (2001) have considered 3D interface inclusion problem
based on the representations of displacements and stresses in term
of Love’s strain potential and Hankel transform technique. Kucher
and Markenscoff (2004) have formulated the boundary value
problem of traction for inhomogeneous anisotropic elastic materi-
als in terms of stresses and applied it to spherically anisotropic
materials. Peng et al. (2005) have presented a new simple
engineering method for estimating the stress-intensity factor
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around a quarter-cracks emanating from a notch. Vetyukov et al.
(2011) have suggested a novel asymptotic approach to the theory
of non-homogeneous anisotropic piezoelectric plates.

In this paper, using a new semi-analytical method, called
hereafter Decoupled Scaled Boundary Finite Element Method
(DSBFEM), 3D bounded and unbounded elastostatic problems are
investigated. The DSBFEM is the extension of the previous research
of the authors for solving 2D potential (Khaji and Khodakarami,
2011) and 2D elastostatic (Khodakarami and Khaji, 2011) prob-
lems. Therefore, the main concepts of the method are given in this
paper. In other words, emphasis is mainly devoted to those impor-
tant features of the DSBFEM which are subjected to considerable
modifications compared to the previous works performed by the
authors. In the DSBFEM, analogous to the previous works for solv-
ing 2D bounded potential and elastostatic problems, only domain
boundaries are discretized. Consequently, the governing ordinary
differential equations are solved in the problem domain,
analytically. The elements of the domain boundary are of special
subparametric type in which, new special shape functions and
higher-order Chebyshev mapping functions are employed.
Proposing a weighted residual form and using Clenshaw–Curtis
quadrature, the coefficient matrices of the system of equations be-
come diagonal, which results in decoupled ordinary differential
equations for the whole system. This means that the governing
equation for each degree of freedom (DOF) is independent from
other DOFs of the domain boundary. Accuracy and efficiency of
the DSBFEM are illustrated through four benchmark problems.

2. 3D elastostatic governing equations in global coordinates

The equilibrium equations in elasticity may be solved based on
either a strong or a weak formulation of the problem. In the strong
formulation, one may directly elaborate the equilibrium equations
and associated boundary conditions (BCs) written in a differential
form. In the weak formulation one uses an integral form of the
equations of motion.

The DSBFEM is a semi-analytical procedure which is based upon
a weak formulation of the governing equations of elastostatic prob-
lems. The equilibrium equations for a 3D domain X ðX � R3Þ
shown in Fig. 1 may be described by

rij;j þ fi ¼ 0 ð1Þ

in which rij indicates the stress tensor components, and fi denotes
the external source of exciting forces per unit volume. For a 3D
domain in global coordinates, i ¼ X; Y; Z and j ¼ X;Y; Z (see
Fig. 1(a)).

Instead of employing the governing equations and correspond-
ing boundary conditions directly (i.e., the strong form of Eq. (1)),
one may use a weak form (e.g. integral form as weighted residual
method). This may be performed by weighting Eq. (1) with
arbitrary weighting function ðwiÞ, and integrating over the problem
domain X. This results in the following formZ

X
wiðrij;j þ fiÞdX ¼ 0 ð2Þ

orZ
X

wirij;jdXþ
Z

X
wifidX ¼ 0: ð3Þ

Eq. (3) will be followed and discussed in Section 5.

3. Geometry modeling by mapping functions

To analyze a problem using numerical methods, the problem
domain should be discretized. In the DSBFEM, a scaling center
(SC) is chosen from which all domain boundaries are visible

(Fig. 1(a)). For the bounded domains, the SC can be selected inside
the domain or on the boundary. As a result, the total boundary of
the domain consists of two types of surfaces: the surface that pass
through the SC, and the other remaining surfaces. In the DSBFEM,
only the surfaces that does not pass through the SC should be
discretized by ne two-dimensional (2D) subparametric elements
Sn

e; e ¼ 1;2; . . . ;ne, so that Sn ¼ [ne
e¼1Sn

e (see Fig. 1(b)).
In the DSBFEM, a geometry transmission from global Cartesian

coordinates ðx
_
; y
_
; z
_
Þ to local dimensionless coordinates ðn;g; fÞ is

proposed. The transmission is performed by Chebyshev polynomi-
als as mapping functions. Three dimensionless local coordinates
n;g and f are defined as n is radial coordinate from the SC to the
boundaries, while g and f are tangential coordinates on the bound-
ary surfaces. The radial coordinate n is equal to zero at the SC and is
equal to 1 on the boundary surfaces. The tangential coordinates g
and f vary between �1 and þ1 on the boundary surfaces.

In addition, the displacement and stress components at each
node are interpolated by special shape functions that are intro-
duced in this paper. The mapping functions and the special shape
functions are illustrated in the following sections.

After discretizing the boundary surfaces, the domain boundary
geometry is approximated using mapping functions. Each element
on the boundary is analogous to a quadrilateral; thus, an appropri-
ate one-by-one mapping between a square parent element and
each real physical element Sn

e may be established. In the DSBFEM,
subparametric elements whose mapping functions ½Uðg; fÞ� are dif-
ferent from shape functions ½Nðg; fÞ� are introduced (see section 4
for more details on shape functions). If the global coordinates of
the ith node of element Sn

e on the boundary surfaces are denoted
by xi; yi and zi, each element Sn

e may be defined in terms of a set
of M mapping functions /aðg; fÞ which is related to nodes a,
a ¼ 1;2; . . . ;M. The geometry of elements in local coordinates is
then written as

fxðg; fÞg ¼ ½Uðg; fÞ�fxg ð4Þ

or,

xðg; fÞ ¼
XM

i¼1

xi/iðg; fÞ; yðg; fÞ ¼
XM

i¼1

yi/iðg; fÞ;

zðg; fÞ ¼
XM

i¼1

zi/iðg; fÞ ð5Þ

in which

fxðg; fÞg ¼ bxðg; fÞ; yðg; fÞ; zðg; fÞcT ;
fxg ¼ bx1; y1; z1; x2; y2; z2; . . . ; xM; yM; zMcT ð6Þ

and ½UðgÞ� ¼ ½/1ðgÞ½I�;/2ðgÞ½I�; . . . ;/MðgÞ½I��, and ½I� indicates a 3� 3
identity matrix. Furthermore, x, y and z denote the global coordi-
nates of the boundary surface points.

In the DSBFEM, any point in the domain with x
_
; y
_

and y
_

coordi-
nates relates to the corresponding point on the elements of the
boundary using the following equations

x
_
ðn;g; fÞ ¼ nxðg; fÞ ¼ n

XM

a¼1

xa/aðg; fÞ; ð7Þ

y
_
ðn;g; fÞ ¼ nyðg; fÞ ¼ n

XM

a¼1

ya/aðg; fÞ; ð8Þ

z
_
ðn;g; fÞ ¼ nzðg; fÞ ¼ n

XM

a¼1

za/aðg; fÞ: ð9Þ

In order to produce mapping functions, the Chebyshev
polynomials are employed. The number of nodes in each boundary
element is denoted by M ¼ ðng þ 1Þðnf þ 1Þ, where ðng þ 1Þ and
ðnf þ 1Þ indicate the numbers of nodes along g or f directions,
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