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a b s t r a c t

The paper describes the use of random fields and finite elements to assess the influence of porosity and
void size on the effective elastic stiffness of geomaterials. A finite element model is developed involving
‘‘tied freedoms’’ that allows analysis of an ideal block of materials leading to direct evaluation of the
effective Young’s modulus and Poisson’s ratio. The influence of block size and representative volume ele-
ments (RVE) are discussed. The use of random fields and Monte-Carlo simulations deliver a mean and
standard deviation of the elastic parameters that lead naturally to a probabilistic interpretation. The
methodology is extended to a foundation problem involving a footing on an elastic foundation containing
voids. The approach enables estimates to be made of the probability of excessive settlement.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The motivation for this work came from a study of foundations
resting on subsurface materials containing voids of variable porosity
and size (Griffiths et al., 2011a,b). Such sites may consist of a karst
topography, which is a special type of landscape and subsurface
characterized by the dissolution of soluble rocks, including lime-
stone and dolomite. Even if the expected porosity of the site can
be conservatively estimated, the location of the voids may be un-
known lending itself to a probabilistic analysis. In addition, two sites
with the same porosity may have quite different void sizes, where
one has numerous small voids, while the other, fewer large voids.
To facilitate modeling of boundary value problems, the goal of this
work is to determine the effective elastic parameters of such mate-
rials, where the effective values are defined as the Young’s modulus
and Poisson’s ratio (or shear and bulk modulus) that would have led
to the same response if the material had been homogeneous.

In this paper, we use the random finite element method (RFEM)
(e.g. Fenton and Griffiths, 2008) to examine the influence of voids
on the parameters of an elastic material. The method starts with a
conventional plane strain FE model of an elastic block of material,
after which a random field of values is generated taking account of

local averaging (e.g. Fenton and Vanmarcke, 1990) and mapped
onto the mesh. The goal of the study is to generate results giving
guidance on the mean and standard deviation of the effective
Young’s modulus and Poisson’s ratio as a function of porosity and
void size. The parametric studies reported in this paper also give
insight into the relationship between the representative volume
element (RVE) for a material containing voids and the number of
Monte-Carlo simulations needed to reach statistical convergence.

The void volume and size within the specimen is controlled
though parameters of the random field as will be explained in
the next two sections. Having established the statistical distribu-
tions of effective properties as mentioned above, the information
can then be applied to more practical boundary value problems.
Later in this paper, we consider the influence of voids on the settle-
ment of a strip footing, leading to estimates of the probability of
excessive settlement.

The behavior of a heterogeneous material with micro-structure,
consisting of varying properties has been studied by a number of
investigators. The goal is to obtain the effective or equivalent prop-
erties at the macro-scale. An important objective of micro-
mechanics is to link mechanical relations going from finer to coar-
ser length scales.

It is assumed that the stiffness parameters of the intact material
(e.g. E and t) are known, and the goal of the investigation then be-
comes one of assessing the macro-stiffness of the material when it
is interspersed with voids. A useful concept in this homogenization
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process is the representative volume element or RVE. An RVE is an
element of the heterogeneous material that is large enough to cap-
ture the effective properties in a reproducible way. From a model-
ing point of view, the smallest RVE that can achieve this is of
particular interest (e.g. Liu, 2005).

The concept of the RVE was first introduced by Hill (1963), since
when there have been many numerical simulations developed and
applied to determine RVE size (e.g. Kulatilake, 1985; Kanit et al.,
2003; Ning et al., 2008; Esmaieli et al., 2010; Huang et al., submit-
ted for publication). Several theoretical models have also been
proposed for dealing with scale effects ranging from micro to
macro levels. The Differential Method (Roscoe, 1952) has been
one of the most effective and widely used methods. The Composite
Spheres Model (Hashin, 1962) considered only a single inclusion
and led to simple closed-form expressions. The Self Consistent
Method (Budiansky, 1965; Hill, 1965) and the Generalized Self
Consistent Method, formalized by Christensen and Lo (1979) in-
volved embedding an inclusion phase directly into an infinite med-
ium. Christensen and Lo (1979) explained that the final form of this
method can solve the spherical inclusion problem. Finally, the Mori
and Tanaka (1973) method as described by Benveniste (1987) has
attracted a lot of interest and involves quite complex manipula-
tions of the field variables along with special concepts of strain
and stress. Although there are many analytical models for estimat-
ing the effective elastic properties of a material containing voids,
they are often limited to voids with simple shapes. See also the
review of Klusemann and Svendsen (2009).

Numerical methods such as the finite element method (FEM) or
the boundary element method (BEM) have been used to validate
some of the theoretical approaches. Two major variables can be
investigated in a realistic representation of a defective material;
namely the volume and size of the voids or inclusions. Isida and
Igawa (1991) considered several kinds of periodic arrays of holes,
while Day et al. (1992) considered a material containing circular
holes within a triangular or hexagonal matrix and occasionally
over-lapping random circular holes. Hu et al. (2000) developed a
numerical model based on BEM to estimate effective elastic
properties such as Young’s modulus, bulk modulus and shear

modulus. The main objective was to investigate the influence of
the shortest distance between holes of random size and volume
based on a normal distribution. Cosmi (2004) introduced a new
numerical model called the Cell Method (CM) to investigate the ef-
fect of randomly located voids. The model consisted of a homoge-
neous matrix of cells which contains randomly located voids. Li
et al. (2010) developed an FEM model to calculate the elastic prop-
erties of porous materials with randomly distributed voids.

2. Finite element model

Assuming consistent units, the initial finite element mesh for
this study (e.g. Smith and Griffiths, 2004) considers a square plane
strain block of material modeled by 50 � 50 8-node square ele-
ments of unit side length (Dx = Dy = 1) as shown in Fig. 1. The
boundary conditions allow vertical movement only of nodes on
the left side, horizontal movement only of nodes on the bottom
side, with the bottom-left corner node fixed. The vertical compo-
nents of all nodal freedoms on the top loaded side are ‘‘tied’’, as
are the horizontal components of all nodal freedoms on the right
side. Tied freedoms are forced to move by the same amount in
the analysis because they are assigned the same freedom number
during stiffness assembly. The tied freedom approach offers an ele-
gant way of modeling a heterogeneous medium as an ideal ele-
ment of material. The tied freedom approach ensures that the
square deforms into a rectangle. Other methods employing stress
or strain control may give similar outcomes, but the proposed tied
freedom approach, while resulting in neither uniform stresses nor
strains within the block, allows an exact back-calculation of equiv-
alent elastic parameters as will be described.

A vertical force shown as Q = 50 in the figure is applied to the
tied vertical freedom on the top of the square imposing an average
unit vertical pressure of Q/L = 1. The boundary conditions ensure
that no matter what degree of heterogeneity is introduced, such
as, for example, the darker regions in Fig. 1 indicating voids, the
mesh will always deform as an ideal element with the top surface
remaining horizontal and the right side remaining vertical. From

Nomenclature

A element area
B footing width
C settlement proportionality constant
E effective Young’s modulus
Ei effective Young’s modulus at the ith simulation
E0 Young’s modulus of intact material
Dx element width
Dy element height
L width and height of block
n porosity
P½�� probability
Q vertical force
x, y cartesian coordinates
Z random variable
zn/2 value of the standard normal variable
a dimensionless element size parameter
c variance reduction due to local averaging
rx normal stress in x direction
ry normal stress in y direction
rz normal stress in z direction
ex normal strain in x direction

ey normal strain in y direction
dx horizontal deformation
dy vertical deformation
dv vertical deformation in settlement analysis
dvi vertical deformation at the ith simulation
h spatial correlation length (dimensional)
H spatial correlation length (non-dimensional)
t effective Poisson’s ratio
lE=E0

mean of effective normalized Young’s modulus
rE=E0 standard deviation of effective normalized Young’s

modulus
l mean
lt mean of t
q correlation coefficient
r, r2 standard deviation, variance
r2
ðAÞ variance after local averaging

rt standard deviation of t
sx, sy difference between x and y coordinates of two points
U½�� standard normal cumulative distribution function
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