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a b s t r a c t

This paper proposes a one-dimensional (1D) refined formulation for the analysis of laminated composites
which can model single fibers and related matrices, layers and multilayers. Models built by means of an
arbitrary combination of these four components lead to a component-wise analysis. Different scales can be
used in different portions of the structure and this leads to a global–local approach. In this work,
computational models were developed in the framework of finite element approximations. The 1D FE for-
mulation used has hierarchical features, that is, 3D stress/strain fields can be detected by increasing the
order of the 1D model used. The Carrera Unified Formulation (CUF) was exploited to obtain advanced
displacement-based theories where the order of the unknown variables over the cross-section is a free
parameter of the formulation. Taylor- and Lagrange-type polynomials were used to interpolate the
displacement field over the element cross-section. Lagrange polynomials permitted the use of only pure
displacements as unknown variables. The related finite element led straightforwardly to the assembly of
the stiffness matrices at the structural element interfaces (matrix-to-fiber, matrix-to-layer, layer-to-layer
etc). Preliminary assessments with solid model results are proposed in this paper; various numerical
examples were carried out on cross-ply symmetrical fiber-reinforced laminates [0/90/0] and a more com-
plex composite C-shaped model. The examples show that the proposed models can analyze laminated
structures by combining fibers, matrices, layers and multilayers and by referring to a unique structural
finite element formulation.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The use of composite materials for aerospace applications is
greatly advantageous since composites have better specific proper-
ties than traditional metallic materials. A composite structure, for
instance, can be some ten times stiffer and two times lighter than
an aluminium one. This is the main reason leading to the design of
‘full composite’ structures for the most advanced aerospace
vehicles. Despite this, there are still many key problems to be
considered for a more rational use of composite materials such
as fatigue and the characterization of failure mechanisms. A better
understanding of these key problems in composite structure appli-
cations demands enhanced analysis capabilities in various fields.
Among these, the present work proposes enhanced structural
capabilities to detect accurate stress/strain fields in the matrix,
fibers, layers and interfaces of composite layered structures with
low computational costs.

Many techniques are available to compute accurate stress/
strain fields in the various components of a laminated structure
(i.e. fibers, matrices and layers); these techniques are briefly dis-
cussed hereafter. The natural manner of refining the analysis of
1D and 2D components consists of using 3D solid finite elements.
These elements can be employed to discretize single components
(fibers and matrices) or to directly model the layer of a laminated
structure; fibers and matrices can be modeled as independent ele-
ments or they can be homogenized to compute layer properties.
Due to the limitations on the aspect ratio of 3D elements and to
the high number of layers used in real applications, computational
costs of a solid model can be prohibitive.

Classical theories which are known for traditional beam (1D)
and plate/shell (2D) structures have been improved for application
to laminates. There are many contributions based on different
approaches: higher-order models (Kant and Manjunath, 1989;
Kapania and Raciti, 1989), zig–zag theories (Lekhnitskii, 1935;
Ambartsumian, 1962; Reissner, 1984; Carrera, 2003) and layer-
wise (LW) approaches (Robbins and Reddy, 1993; Carrera, 1998;
Carrera and Petrolo, 2012b). So-called global–local approaches have
also been developed by exploiting the superposition of Equivalent
Single Layer models (ESL) and LW (Mourad et al., 2008), or by using
the Arlequin method to combine higher- and lower-order theories
(Ben Dhia and Rateau, 2005; Biscani et al., 2011).
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Many studies on multiscale problems in composites have re-
cently been conducted as in Mergheim (2009); one of the most
important results is that ‘‘processes that occur at a certain scale
govern the behavior of the system across several (usually larger)
scales’’ (Lu and Kaxiras, 2005). This result implies that the develop-
ment of analysis capabilities involving many scale levels is neces-
sary in order to properly understand multi-scale phenomena in
composites. Various spatial and temporal multiscale methods for
composite structures have recently been described by Fish (2011)
including concurrent and information-passing schemes, block cy-
cles and temporal homogenization approaches. Another excellent
overview on multiscale simulations was made by Lu and Kaxiras
(2005). Other recent studies (Kwon, 2004; Fish, 2011; Lu and Kax-
iras, 2005) have proposed the use of the molecular dynamic anal-
ysis at nano-scale level, Representative Volume Elements (RVE)
at micro-scale level and structural elements (e.g. solids, beams,
plates or shells) at macro-scale level. Various multiscale linear
and non-linear techniques can be found in literature for different
loading configurations, focused on the prediction of failure pro-
cesses (Zhang and Zhang, 2010; Gonzalez and LLorca, 2006). Mul-
tiscale approaches have been exploited to examine the failure
behavior of fiber-reinforced laminates subjected to static loading
conditions in Alfaro et al. (2011). The ‘Generalized Method of Cell’
(GMC) developed by Paley and Aboudi (Aboudi, 1991; Paley and
Aboudi, 1992; Aboudi, 1994) considers fiber and matrix subcells
as periodic repeating unit cells or Representative Volume Ele-
ments. GMC was used by Pineda and Waas for the multiscale fail-
ure analysis of laminated composite panels subjected to blast loads
(Pineda and Waas, 2009) and for the progressive damage and fail-
ure modeling of notched laminated fiber reinforced composites
(Pineda et al., 2009). An accurate GMC description can be found
in Arnold et al. (1999). Two-and three-scale domain decomposi-
tions were used by Allix et al. (2011) for delamination analysis. A
laminated composite structure was divided into two meso-constit-
uents-substructures and interfaces-whose behavior was derived
from the homogenization of micromodels. A two-level domain
decomposition method was proposed by Ladeveze et al. (2001)
as a computational strategy for the analysis of structures described
up to micro-level. In this approach, the unknowns are split into a
set of macroscopic quantities, related to the macro-scale, and a
set of additive quantities related to the micro-scale. The LATIN
method was used as the iterative strategy. This approach was
tested on fiber-reinforced composite and honeycombs under the
assumption of plane strains. Some applications on the damage mi-
cro-model of fiber-reinforced laminated composites were reported
in Ladeveze and Nouy (2003) and Ladeveze et al. (2006).

The most critical issues of many multiscale approaches pro-
posed in literature are related to the high computational costs
required (in some cases hundreds of million of degrees of freedom)
and the need for material properties at nano-, micro- and macro-
scale. These aspects can affect the reliability and applicability of
these approaches.

The method proposed in this paper is referred to as component-
wise and it is based on higher-order 1D models. ‘Component-wise’
means that each typical component of a composite structures (i.e.
layers, fibers and matrices) can be separately modeled by means of
a unique formulation. Moreover, in a given model, different scale
components can be used simultaneously, that is, homogenized
laminates or laminae can be interfaced with fibers and matrices.
This permits us to tune the model capabilities by (1) choosing in
which portion of the structure a more detailed model has to be
used; (2) setting the order of the structural model to be used. A
description of the present model capabilities is provided in Fig. 1
where different components (layers, fibers and matrices) are
assembled. Such a model could be seen as a ‘global–local’ model
since it can be used either to create a global model by considering

the full laminate or to obtain a local model to detect accurate
strain/stress distributions in those parts of the structure which
could be most likely affected by failure. In other words, the present
modeling approach permits us to obtain progressively refined
models up to the fiber and matrix dimensions.

The models adopted in this paper were derived through the
Carrera Unified Formulation (CUF). In the framework of CUF, it is
possible to model laminates, fibers and matrices using only 1D
elements, with a significant reduction of DOFs involved. Laminate’s
inhomogeneity and anisotropy are accounted for by separately
modeling each component at its own scale level. CUF 1D models
have recently been developed (Carrera and Giunta, 2010; Carrera
et al., 2011a) and two classes of models were proposed, the
Taylor-expansion class (TE) and the Lagrange-expansion class
(LE). TE models exploit N-order Taylor-like polynomials to define
the displacement field above the cross-section with N as a free
parameter of the formulation. Static (Carrera et al., 2010a,b;
Carrera et al., 2012) and free-vibration analyses (Carrera et al.,
2011b; Carrera et al., in press; Petrolo et al., in press) showed the
strength of CUF 1D models in dealing with arbitrary geometries,
thin-walled structures and local effects. Moreover, asymptotic-like
analysis leading to reduced refined models was carried out by
Carrera and Petrolo (2011).

The LE class is based on Lagrange-like polynomials to discretize
the cross-section displacement field. LE models have only pure
displacement variables. Static analysis on isotropic (Carrera and
Petrolo, 2012a) and composite structures (Carrera and Petrolo,

Fig. 1. Component-wise approach for layers, fibers and matrices.

Fig. 2. Coordinate frame.
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