
ELSEVIER

Contents lists available at ScienceDirect

Journal of Photochemistry and Photobiology A: Chemistry

journal homepage: www.elsevier.com/locate/jphotochem

A novel photorearrangement of (coumarin-4-yl)methyl phenyl ethers

Janina Schaal^a, Nico Kotzur^a, Brigitte Dekowski^a, Jana Quilitz^b, Maria Klimakow^c, Pablo Wessig^{b,*}, Volker Hagen^{a,**}

- ^a Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
- ^b Universität Potsdam, Institut für Chemie, Karl-Liebknecht-Str. 24/25, 14476 Potsdam-Golm, Germany
- ^c Bundesanstalt für Materialforschung und -prüfung, Richard-Willstätter-Str. 11, 12489 Berlin, Germany

ARTICLE INFO

Article history:
Received 15 July 2009
Received in revised form
10 September 2009
Accepted 14 September 2009
Available online 19 September 2009

Keywords: Flash photolysis Photochemical rearrangement Coumarin Synthesis

ABSTRACT

In the present study, we describe synthesis and photochemical behaviour of the coumarinylmethyl phenyl ethers **1** and **6–10**. Irradiation of the compounds in polar solvents leads to *o-*, *p-* and *m-*hydroxybenzyl substituted coumarins as main products. A side reaction is the photosolvolysis of the ethers that gives the (coumarin-4-yl)methyl alcohol and the corresponding phenol. Detailed studies of the quantum yields and product distributions upon irradiation of **6** as a function of the solvents are indicative of a dominant role of an ionic pathway in photochemical conversions. The found photochemical rearrangement is a useful tool for the preparation of hydroxylated 4-benzylcoumarins. A series of such compounds have been synthesised.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In the course of our studies on photoactivatable derivatives of vanilloid receptor ligands [1] we synthesised and photolysed the coumarinylmethyl capsaicin ether **1**. Compound **1** should be developed as so-called caged compound which upon illumination with UV/vis light releases temporally and spatially controlled the vanilloid capsaicin **2** [(*E*)-*N*-(4-hydroxy-3-methoxybenzyl)-8-methyl-non-6-enamide]. The biomolecule **2** is the pungent ingredient of chili peppers and is used in pain research as an activating ligand of heat-sensitive transduction channels in nociceptive neurons. However, contrary to our expectations light-induced reaction of **1** in aqueous buffer and quantification of the products by calibrated HPLC yielded the solvent-assisted photoheterolysis product **2** [2] only in small amounts (about 8%), but gave the novel rearrangement compound **4** as main product in a yield of 34% (Scheme 1).

To our knowledge, photochemical rearrangements of (coumarin-4-yl)methyl aryl ethers have not been described. However, well-known is the Photo-Claisen rearrangement [3] which was reported for the first time for allyl phenyl ethers and for ben-

hagen@fmp-berlin.de (V. Hagen).

zyl phenyl ethers [4], and later also for naphthylmethyl phenyl ethers [5]. The reaction is usually carried out in nonpolar solvents and involves commonly an intramolecular radical process within a solvent cage to give a mixture of *ortho*- and *para*-rearranged products [3,5]. In the case of naphthylmethyl phenyl ethers (*o*-hydroxybenzyl)- and (*p*-hydroxybenzyl)naphthalenes are formed. The excitation energy is mainly localised in the phenyloxy and not in the arylmethyl chromophore.

Furthermore, thermal sigmatropic rearrangements of 3-(aryloxymethyl)coumarins at high temperatures (240 °C) resulting in 3-(o-hydroxybenzyl)- or 3-(p-hydroxybenzyl)-coumarins have been reported [6], but the corresponding 4-(aryloxymethyl)coumarins failed to undergo any such rearrangement [7].

The novel photorearrangement of the (coumarin-4-yl)-methyl phenyl ethers is of considerable interest both as a preparative method and for its theoretical implications. With the aim to get more information about this reaction we investigated the photochemical behaviour of 1 and of a series of various simply substituted (coumarin-4-yl)methyl phenyl ethers. Here, we present the results of the studies.

2. Experimental

2.1. Materials

Capsaicin (**2**) was obtained from Sigma (Germany). 4-(Bromomethyl)-7-methoxycoumarin (**5**), 7-methoxy-4-methylcoumarin

^{*} Corresponding author. Tel.: +49 331 9775401; fax: +49 331 9775065.

^{**} Corresponding author. Tel.: +49 30 94793270; fax: +49 30 94793159. E-mail addresses: wessig@uni-potsdam.de (P. Wessig),

Scheme 1. Photochemical rearrangement of 1.

(20), 7-methoxycoumarin (22), phenol, 2-methylphenol, 2,6-dimethylphenol, 2,4,6-trimethylphenol, 2-methoxyphenol, thiophenol, aniline, and trifluoroacetic acid (TFA) were purchased from Aldrich (Germany). The remaining chemicals were of the highest grade commercially available and were used without further purification. 7-[Bis(tert-butoxycarbonylmethyl)amino]-4-(bromomethyl)coumarin was prepared as described previously [8]. TLC plates (silica gel 60 F₂₅₄) were purchased from E. Merck (Germany). Silica gel for flash chromatography was from J.T. Baker (The Netherlands). CH₃CN from Riedel-deHaen (Germany) was HPLC grade. Water was purified with a Milli-Q-Plus system (Millipore, Germany). The synthetic and analytical procedures with the coumarinylmethyl phenyl ethers were performed under yellow light provided by sodium vapor lamps.

2.2. Instrumentation

¹H and ¹³C NMR spectra were recorded using a Bruker AV 300 spectrometer. Chemical shifts are given in parts per million (ppm) using the residue solvent peaks as reference relative to TMS. J values are given in Hz. Mass spectra were measured by electrospray ionization (ESI-TOF) mass spectrometry on an Acquity UPLC system coupled to LCT Premier (Waters) or on an Agilent 6220 ESI-TOF spectrometer (Agilent Technologies, U.S.A.). UV/vis spectra were recorded on a UV/vis spectrophotometer Lambda 9 (PerkinElmer). Fluorescence spectra were taken on a Jasco FP-6500 spectrometer. Phosphorescence was measured on a Fluoromax-4P spectrofluorometer (HORIBA Jobin Yvon). Analytical reversed-phase HPLC (RP-HPLC) was carried out on a Shimadzu LC-20 system (flow rate: 1 mL min⁻¹) equipped with a DAD-UV detector and a fluorescence detector (λ_{exc} = 320 nm, λ_{em} = 420 nm) by using a Nucleodur 100-5 C18 ec column, 100 Å, 5 μm, 250 mm × 4 mm, Macherey-Nagel (Germany). The given retention times (t_R) with exception of those of compounds 1 and 4 are related to a linear gradient of 20-95% B in A in 30 min (eluent A, H₂O/0.1% TFA; eluent B, CH₃CN). Preparative RP-HPLC was run on a Shimadzu LC-8A system (flow rate: 10 mLmin⁻¹) with a UV/vis detector (SPD-6AV, $\lambda_{\text{det}} = 320 \,\text{nm}$) over a Nucleodur 100-5 C18 ec column (100 Å, 5 μ m, 250 mm × 21 mm) from Macherey-Nagel (Germany). Photolysis of all synthesised photoprotected compounds in solution was performed by using a high-pressure mercury lamp (HBO 500, Oriel, U.S.A.) with controlled light intensity and metal interference filter (334 nm, Oriel, U.S.A.). For all experiments, UV and fluorescence quartz cuvettes with a path length of 1 cm and a cross-sectional area of 1 cm² were used. During irradiation, the solutions in the cuvettes were mixed by a magnetic stirrer. The melting points are uncorrected.

2.3. Synthesis

2.3.1. (E)-{7-[Bis(tert-butoxycarbonylmethyl)amino] coumarin-4-yl}methyl 2-methoxy-4-[(8-methylnon-6-enamido) methyl]-phenyl ether

A mixture of 7-[bis(tert-butoxycarbonylmethyl)amino]-4-(bromomethyl)coumarin (48.2 mg, 0.1 mmol) and capsaicin (30.4 mg, 0.1 mmol) was stirred in DMF (1 mL) for 24h at room temperature in the presence of K₂CO₃ (72.6 mg, 0.2 mmol). The reaction mixture was filtered and evaporated. The residue was dissolved in CH₂Cl₂, washed with water (3×), dried with MgSO₄, evaporated and purified by preparative RP-HPLC. The desired product was eluted using a linear gradient 45-95% B in A in 60 min; eluent A, H₂O; eluent B, CH₃CN. The main fraction with a retention time of 58.1 min was collected, evaporated in vacuo, redissolved in CH₃CN/H₂O, and lyophilised to give 39.5 mg (56%) of a yellow solid, mp 130–132 °C; TLC, R_f 0.45 (n-hexane/THF = 1:1); ¹H NMR $(300 \text{ MHz}, \text{DMSO-}d_6)$: $\delta 0.92 (6H, d, I = 6.7, 2 \times \text{CH}_3)$, 1.29 (2H, quintet, I = 7.4, $CH_2CH_2CH=CH$), 1.42 (18H, s, $2 \times 3 \times CH_3$), 1.51 (2H, quintet, I = 7.4, $CH_2CH_2CH_2CH_2$), 1.94 (2H, q, I = 7.0, $CH_2CH = CH$), 2.11 (2H, t, J=7.3, CH_2CONH), 2.20 [1H, sextet, J=6.6, $CH(CH_3)_2$], 3.78 (3H, s, OCH₃), 4.20 (6H, m, CH_2NH and $2 \times CH_2N$), 5.29 (2H, s, Coum-CH₂), 5.31-5.38 (2H, m, CH=CH), 6.21 (1H, s, CoumH-3), 6.47 (1H, d, J=2.2, CoumH-8), 6.59 (1H, dd, J=9.0 and 2.2, CoumH-6), 6.76 (1H, d, J=8.5, PhH-5), 6.91 (1H, s, PhH-3), 7.06 (1H, d, J=8.3, PhH-6), 7.64 (1H, d, J=8.9, CoumH-5), 8.22 (1H, t, J = 5.8, NH); ¹³C NMR (75.5 MHz, DMSO- d_6): δ 22.5 (2 × CH₃), 24.9 ($CH_2CH_2CH_2CH_2$), 27.7 (6 × CH_3), 28.6 ($CH_2CH_2CH=CH$), 30.3 [CH(CH₃)₂], 31.6 (CH₂CH=CH), 35.2 (CH₂CONH), 41.7 (CH₂NH), 53.5 (2 × CH₂N), 55.6 (OCH₃), 66.0 (Coum-CH₂), 81.1 [2 × C(CH₃)₃], 98.1 (CoumC-8), 106.6 (CoumC-3), 107.2 (CoumC-4a), 109.0 (CoumC-6), 111.6 (PhC-3), 113.8 (PhC-6), 119.2 (PhC-5), 125.5 (CoumC-5), 126.6 (CH₂CH=CH), 133.4 (PhC-4), 137.3 (CH₂CH=CH), 145.8 (PhC-1), 149.0 (PhC-2), 151.3 (CoumC-7), 151.7 (CoumC-4), 155.0 (CoumC-8a), 160.5 (CoumC-2), 168.8 (2 × COOt-Bu), 171.9 (CONH); HRMS (ESI): $C_{40}H_{54}N_2O_9$, m/z [M+Na]⁺ calcd 729.3727; found: 729.3695; elemental analysis calcd (%) for C40H54N2O9 (706.9): C, 67.97; H, 7.70, N, 3.96; found: C, 67.87; H, 7.68; N, 3.82.

2.3.2. (E)-7-{[Bis(carboxymethyl)amino]coumarin-4-yl}methyl 2-methoxy-4-[(8-methylnon-6-enamido)methyl]-phenyl ether (1)

(*E*)-7-{[Bis(tert-butoxycarbonylmethyl)amino]coumarin-4-yl} methyl 2-methoxy-4-[(8-methylnon-6-enamido)-methyl]-phenyl ether (30 mg, 0.042 mmol) was stirred in a mixture (10 mL) of TFA/CH₂Cl₂/H₂O (74:25:1) at room temperature for 30 min. The

Download English Version:

https://daneshyari.com/en/article/27825

Download Persian Version:

https://daneshyari.com/article/27825

<u>Daneshyari.com</u>