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a b s t r a c t

The paper addresses the problem of a Mode III interfacial crack advancing quasi-statically in a heteroge-
neous composite material, that is a two-phase material containing elastic inclusions, both soft and stiff,
and defects, such as microcracks, rigid line inclusions and voids. It is assumed that the bonding between
dissimilar elastic materials is weak so that the interface is a preferential path for the crack. The pertur-
bation analysis is made possible by means of the fundamental solutions (symmetric and skew-symmetric
weight functions) derived in Piccolroaz et al. (2009). We derive the dipole matrices of the defects in ques-
tion and use the corresponding dipole fields to evaluate ‘‘effective’’ tractions along the crack faces and
interface to describe the interaction between the main interfacial crack and the defects. For a stable prop-
agation of the crack, the perturbation of the stress intensity factor induced by the defects is then balanced
by the elongation of the crack along the interface, thus giving an explicit asymptotic formula for the cal-
culation of the crack advance. The method is general and applicable to interfacial cracks with general dis-
tributed loading on the crack faces, taking into account possible asymmetry in the boundary conditions.

The analytical results are used to analyse the shielding and amplification effects of various types of
defects in different configurations. Numerical computations based on the explicit analytical formulae
allows for the analysis of crack propagation and arrest.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Analytic solutions for a crack propagating in a homogeneous
elastic solid containing a finite number of small defects (elastic
and rigid inclusions, microcracks, voids) have been derived in
Bigoni et al. (1998), Valentini et al. (1999), and Movchan et al.
(2002) on the basis of the dipole matrix and weight function ap-
proach. The dipole field describes the leading-order perturbation
produced by a small defect placed in a smooth stress field and
gives rise to ‘‘effective’’ tractions applied along the crack faces, that
is, ideal tractions which produce the same perturbation as that of
the defect in question. Furthermore, the weight functions allow
for the derivation of the corresponding perturbation of the stress
intensity factor as weighted integral of the ‘‘effective’’ tractions.
The method is general and applicable to both 2D and 3D cases
and to defects of different type and shape, provided that the corre-
sponding dipole matrix is appropriately constructed and the
weight functions for the corresponding unperturbed cracked body
are available.

Problems of a macrocrack interacting with microcracks have
been analysed by Romalis and Tamuzh (1984) under the influence
of mechanical loading and by Tamuzs et al. (1993) under the influ-
ence of heat flux, using the analytic functions and singular inte-
grals approach (Muskhelishvili, 2008). The possible closure of
crack surfaces and the consequent appearance of a contact zone
have been considered in Tamuzs et al. (1994, 1996). An elastic
problem involving collinear configuration of microcracks ahead
of a macrocrack was solved independently by Rubinstein (1985)
and Rose (1986). Asymptotic models of a semi-infinite crack inter-
acting with microcracks have been developed by Gong and Horii
(1989) and Meguid et al. (1991) using complex potentials and
the superposition principle. Jin et al. (2007) considered the interac-
tion between a Mode III interface crack and a screw dislocation di-
pole. A review of publications on macro–microdefect interaction
problem is given in Tamuzs and Petrova (2002).

Recently, Piccolroaz et al. (2009) derived the symmetric and
skew-symmetric weight functions for a semi-infinite two-dimen-
sional interfacial crack, thus disclosing the possibility of applying
the dipole matrix approach to the propagation of cracks along
the interface in heterogeneous materials with small defects. The
weight functions constructed in Piccolroaz et al. (2009) are of the
generalised type and thus applicable to any type of boundary
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conditions along the crack faces. The singular perturbation associ-
ated with a small crack advance was also obtained there. It is
worth noting that the availability of the skew-symmetric function
for the problem under consideration is essential since the ‘‘effec-
tive’’ loading produced by the defects on the crack faces is not sym-
metrical, in general. In the present paper, we analyse the scalar
case of antiplane shear loading. The full vector problem will be ad-
dressed elsewhere.

The paper is organised as follows. The formulation of the prob-
lem is outlined in Section 2, which includes also preliminary re-
sults on the unperturbed problem. Section 3 is devoted to the
perturbation analysis, in particular the derivation of the dipole
fields for several types of defects and the analysis of singular per-
turbation associated with the crack advance. Section 4 provides a
number of numerical results based on the explicit analytical for-
mulae. In particular, shielding and amplification effects of different
defect configurations on the crack-tip field are presented. Simpli-
fied asymptotic formulae for the limiting case of loading applied
at large distance from the crack tip are also derived in this section
(confirming and extending the results presented in Mishuris et al.
(in press), where only linear defects were considered). The possi-
bility to design a neutral configuration for any given force system
distributed along the crack faces is discussed. Finally, the crack
propagation and arrest produced by the defects under consider-
ation is analysed. In the appendix, we derive the dipole matrix
for an elliptic elastic inclusion placed in a homogeneous antiplane
field.

2. Problem formulation and preliminary results

We consider a two-dimensional composite structure consisting
of a bimaterial matrix (two dissimilar elastic half-planes X±) con-
taining a dilute distribution of inclusions, microcracks and rigid
line inclusions, see Fig. 1. The two materials constituting the ma-
trix are assumed to be linear elastic and isotropic, with shear mod-
uli denoted by l+ and l�, respectively. All interfaces between
different phases are assumed to be perfect, that is, the displace-
ments and tractions remain continuous across the interface.

We introduce the following notations. Let ge �X+ be a small
elastic inclusion of diameter 2el1 centred at the point Y1 = (a1,h1).
The shear modulus of the inclusion is denoted by li, and it can
be greater or smaller than the shear modulus l+ of the surrounding
material, so that both stiff and soft inclusions are considered. The
notation ce

2 � X� is used for a microcrack of the length 2el2, centred
at the point Y2 = (a2,h2) and making an angle a2 > 0 with the posi-
tive direction of the x1-axis. By ce

3 � Xþ we denote a movable rigid

line inclusion of the length 2el3, centred at the point Y3 = (a3,h3)
and making an angle a3 > 0 with the positive direction of the
x1-axis. Although these notations refer specifically to Fig. 1, the
formulation can be easily extended to problems with different
number and type of defects, as those considered in Section 4.

We assume that a semi-infinite interface crack Me advances
quasi-statically along the interface Ce connecting the half-planes,
and we denote the uniform advance of the crack by e2/. Here
and in the sequel, e > 0 is a small dimensionless parameter. The
reason for the order e2 in the crack advance will be clear in Sec-
tion 3, where we perform the asymptotic analysis.

We assume that the composite is dilute, that is, the small de-
fects are distant from each other so that the interaction between
them can be neglected. Consequently, we can model the three
cases of an elastic inclusion, of a microcrack and of a rigid line
inclusion separately. It is possible then to extend the results to a
finite number of defects by superposition using the linearity of
the problem, provided that the distance between defects remains
finite.

An external loading p± is applied to the crack faces Ce
� and it is

assumed to be self-balanced such that the principal force vector is
zero, that is,

Z
Ce
þ

pþdx�
Z

Ce
�

p�dx ¼ 0: ð1Þ

We assume that the loading p± on the crack faces vanishes in a
neighbourhood of the crack tip.

The problem is then formulated in terms of the Laplace
equation

Du�ðx1; x2Þ ¼ 0; Duiðx1; x2Þ ¼ 0; ð2Þ

where u = {u+,u�,ui} denotes the displacement component along x3-
axis in the respective domain Xþ n ge [ ce

3

� �
;X� n ce

2 and ge.
We prescribe the following boundary conditions on the crack

faces

l�
@u�
@x2
¼ p� on Ce

� ð3Þ

and the interface conditions

uþ ¼ u�; lþ
@uþ
@x2
¼ l�

@u�
@x2

on Ce: ð4Þ

The transmission conditions for the elastic inclusion ge are formu-
lated similarly to (4), that is,

uþ ¼ ui; lþ
@uþ
@n
¼ li

@ui

@n
on @ge: ð5Þ

We assume that the microcrack faces c�2 are traction free, so that

@u�
@n
¼ 0 on c�2 : ð6Þ

Finally, on the boundary of the movable rigid line inclusion ce
3 the

Dirichlet boundary condition is prescribed, that is,

uþ ¼ u� on ce
3; ð7Þ

where u⁄ is an unknown constant which will be defined later from
the balance conditionZ

ce
3

@uþ
@n

ds ¼ 0: ð8Þ

The unperturbed problem (e = 0) corresponds to a semi-infinite
interfacial crack in a bimaterial plane. The solution to this problem
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Fig. 1. Geometry of the problem: interface crack in a bimaterial plane with defects:
ge denotes a small elastic inclusion, ce

2 a microcrack, and ce
3 a rigid line inclusion; Y1,

Y2, Y3 are the ‘‘centres’’ of the defects.
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