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A three-dimensional boundary element formulation of an incompressible viscoelastic layer of finite
thickness is proposed, in a moving frame of reference. The formulation is based on two-dimensional Fou-
rier series expansions of relevant mechanical fields in the continuum of the layer. The linear viscoelastic
material is characterized, in the most general way, by its frequency-domain master curves. The presented
methodology results in a compliance matrix for the layer’s upper boundary, which includes the effects of
steady-state motion and can be used in any contact problem-solving strategy. The proposed formulation
is used, in combination with a contact solver, to build a full three-dimensional model for the steady-state
rolling/sliding resistance incurred by a rigid sphere on the layer. Energy losses include viscoelastic damp-
ing and surface friction. The model is tested and its results are found to be consistent with existing solu-
tions in limiting cases. An example is explored and the corresponding results are used to illustrate the
influence of different parameters on the rolling resistance. General aspects of previously-described
dependences are confirmed.
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1. Introduction

For diverse reasons, rolling resistance remains important to
many engineering applications. From nanotechnologies and molec-
ular dynamics (e.g. Lee et al., 2009) to various scale industrial
applications and transportation purposes (e.g. Hall, 2001; Qiu,
2006; Qiu, 2009), from earthquake hazards mitigation, to energy
harvesting and sustainable development considerations (e.g.
Sharp, 2009), depending on human’s objectives and goals, rolling
resistance may be fiercely avoided or eagerly sought and thus re-
quires careful attention.

Rolling resistance has been, and still is, widely addressed in sci-
entific literature. In 1785 experiments on friction were reported by
Coulomb (1821) and Vince and Shepherd (1785). Further experi-
ments led to significant progress during the 1950’s and the early
1960’s towards a better understanding of its complex nature,
involving surface contact phenomena as well as bulk properties
of the interacting materials (Greenwood et al., 1961; Tabor,
1955). Hysteretic friction in the bulk is revealed in many works
on nonstationary viscoelastic contact problems, in various settings
(e.g. Barber et al., 2008; Chertok et al., 2001; Galin and Gladwell,
2008; Golden and Graham, 2001; Morland, 1967; Morland, 1968;
Wang and Knothe, 1993). In particular, rolling friction of hard cyl-
inders was approached in two dimensions using various methods
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(e.g. Hunter, 1961; Johnson, 1985; May et al., 1959; Morland,
1967; Poschel et al., 1999) and its dependence upon physical
parameters was modeled based on simplifying assumptions
regarding the description of the foundation layer and/or the nature
of contact interactions. A one-dimensional treatment of a hard
sphere rolling on a viscoelastic half-space modeled using a ‘Win-
kler’ approximation was given by Flom and Bueche (1959). In the
absence of surface friction, a “first-principle” (i.e. free of empirical
parameters) continuum-mechanics expression of the rolling resis-
tance coefficient was derived by Brilliantov and Péschel (1998) for
the rolling motion of a viscoelastic sphere on a hard plane, in quasi-
static conditions, such that the total stress field may be considered
as the sum of an elastic part and a dissipative part, and the vertical
displacement field may be approximated by the corresponding re-
sult of the static problem.

More recently, numerical difficulties associated with enforcing
frictional conditions on finite element models of hyperelastic tires
rolling in steady state conditions on rigid surfaces, were tackled by
Laursen and Stanciulescu (2006) and Stanciulescu and Laursen
(2006). A full two-dimensional boundary element formulation for
a hard cylinder rolling on a viscoelastic layer of finite thickness
was introduced by Qiu (2006) while Persson (2010) presented an
approach to calculate the rolling resistance of hard objects on vis-
coelastic solids using a static pressure distribution. Alternative ap-
proaches to estimating the viscoelastic rolling resistance on a
sphere in 3D are presented by Zéhil and Gavin (2012). More com-
prehensive solutions to the problem of rolling resistance in three
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dimensions, including frictional effects, remain however in need.
Furthermore, the increasing complexity of numerical models re-
quires investigating possible ways of reducing their computational
costs and hence improving their efficiency.

In this paper, we present a three-dimensional boundary ele-
ment formulation of an incompressible linear viscoelastic layer of
finite thickness, in a moving frame of reference. This formulation
is applied, in combination with a contact solver, to build a full
three-dimensional model for the resistance incurred by a rigid ob-
ject (sphere) rolling/sliding on the layer, including surface friction.
Inspired by the seminal work of Qiu (2006), we expand relevant
mechanical fields in the continuum of the layer into two-
dimensional Fourier series. The storage and loss moduli character-
izing the constitutive behavior of linear viscoelastic materials, in
the frequency domain, are used to relate the Fourier coefficients.
The proposed formulation results in the assembly of a compliance
matrix C characterizing the behavior of the layer’s upper boundary,
including the effects of steady-state motion. This compliance ma-
trix may be used in any stationary or steady-state rolling/sliding
contact problem-solving strategy. The proposed formulation is
quite general and practical in that it accommodates any linear vis-
coelastic model, including experimental master-curves. In order to
increase its computational efficiency, special attention is given to
exploiting configurational similarities as well as symmetry.

2. Defining rolling resistance

Fig. 1 shows a round rigid object (cylinder or sphere of center C
and radius R) rolling in steady-state conditions, on a viscoelastic
layer of finite thickness H. The object moves in direction x at a con-
stant linear velocity V; while rotating about its axis at a rotational
speed Q. It is subjected to a vertical load P (positive downwards), a
driving horizontal force Q (positive in the direction of increasing x)
and a driving torque T (positive clockwise). The indentation d cor-
responds to the maximum penetration of the rolling object below
the surface of the unloaded layer.

Because the contact surface takes the form of the rigid object,
tangential shear stresses are circumferential and normal stresses
are radial, with respect to a polar coordinate system centered at
point C. However, contact stresses can be re-expressed in the
Cartesian coordinate system Oxyz as well.

For the purposes of this work, rolling resistance is defined as a
conceptual horizontal resisting force R,, expressed as a positive
quantity. If it were to be applied at the axis of the moving object,
the rolling resistance would dissipate energy at a rate that is equiv-
alent to the power dissipation actually incurred by the system.
Rolling resistance R; is related to Q and T by
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Fig. 1. General model and coordinate systems.
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In Eq. (1), R is the rolling resistance corresponding to the total dis-
sipated power. It is considered here that, in the absence of surface
friction, rolling resistance is entirely due to viscous dissipations in
the bulk. In such cases, the value of a driving torque is indetermi-
nate, as it can not be equilibrated, and rolling resistance is equal
to the sum of the horizontal projection of the radial contact forces.
Because of the asymmetry of these forces, the rolling resistance is
non-zero.

In the presence of friction, the interfacial shear stresses are not
zero and a driving torque T can be balanced by either taking the
moment of the tangential contact forces about the roller axis, or
taking moments of the vertical and horizontal components of the
contact forces about the same axis. Surface frictions influence roll-
ing resistance in two ways: (i) directly, by means of their resisting
work localized in the slipping regions of the contact surface, and
(ii) indirectly, as demonstrated by Munisamy et al. (1991), by mod-
ifying the (frictionless) contact pressure distribution, which further
impacts the global energy balance. The contribution of slipping
friction to rolling resistance may be evaluated as follows

Rol

f=v Awt.rfdA, (2)

where A, stands for the contact area, w, is the local tangent differ-
ential speed between the sphere and the foundation layer and 7,
corresponds to the tangent stress field across the contact interface.
In the presence of friction, the rolling resistance attributed to the
viscoelastic behavior of the layer, is obtained by subtraction

R/ =R, —RL. 3)

A common case is when the horizontal driving force Q is applied at
the top of the moving object, thus generating a dependent torque
T = QR. Substituting into expression (1) yields

R,:Q<1 +%>. (4)

3. Governing equations

Following the development of Qiu (2006), the viscoelastic layer
of thickness H is assumed to be incompressible, sustains small
deformations and behaves linearly. As shown in Fig. 1, Oxyz corre-
sponds to a moving coordinate system traveling with the sphere,
while O'x'y’z remains at rest. Both coordinate systems are related
according to

x=x -V, y=y, and z=7. (5)

Also, in the traveling coordinate system, material derivatives are ex-

pressed such that time becomes an implicit variable

D o D* L,

b= Vg p2=Viga (6)
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The equilibrium equations for the elastomer in O'x'y’z’ are given, in

tensorial form, by

) D*u
Dt

where u=<u,v,w>" is the displacement field, p stands for

the material’s density, p is the pressure and s denotes the stress

deviator. Eq. (7) may be expressed in Oxyz using (6) and hence
becomes

=div'(s) — grad'(p), (7)
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