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a b s t r a c t

The phenomenological model of dissipative material in the small strain range is developed in the frame-
work of thermodynamics of irreversible processes with internal state variables and local state method.
The possibilities of the model are illustrated in the example of thermo-elastic–plastic damage material.
Particular emphasis is put on including in the description of the full coupling between plasticity and dam-
age in nonisothermal conditions. The consequences of thermal-plastic-damage coupling in consistency
conditions and loading/unloading conditions are studied in detail.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The increasing demands for high performance materials require
the adequate constitutive modeling, as well as the appropriate pre-
dictions of the overall failure mechanisms under complex thermo-
mechanical loads. When engineering materials classified as elas-
tic–plastic-damage (for example polycrystalline metals) are sub-
jected to external loading, the material degradation connected
with slip rearrangements of crystallographic planes through dislo-
cation motion, observed at the macro-scale as plastic behavior
(Chaboche, 2008), is accompanied by the development of other
microscopic defects, like micro-cracks and micro-voids (Lemaitre,
1992; Abu Al-Rub and Voyiadjis, 2003). The nucleation, growth
and interaction of these micro-defects under external loads result
in a deterioration process on the macro-scale and, as a conse-
quence, change of the constitutive properties of the material.

If the elastic–plastic-damage material is loaded so that not only
inelastic strains develop, but also the temperature is changed, then
thermo-elasticity, thermo-plasticity and thermo-damage are
encountered. The experimental results (Bednarek and Kamocka,
2006) proved that not only the temperature itself but also the heat-
ing rate makes a significant impact on parameters that determine
carrying capacity at elevated temperatures, and that heating rate
should be accounted for in the strength analysis of structures ex-
posed to high temperatures. The need for the additional term, pro-
portional to the temperature rate in the evolution equation for the
back-stress was already considered by Prager (1958), introduced

also by Chaboche (1997b) in the unified viscoplastic constitutive
equations using the Armstrong–Frederic format. In Chaboche
(2008) the discussion is made for the necessity of temperature rate
terms in the context of hardening rules.

Ganczarski and Skrzypek (2009) take into account the temper-
ature dependence of all material functions that characterize plas-
ticity and damage components, which results in extended
thermo-plastic-damage equations, with the additional tempera-
ture rate terms in all evolution equations of thermodynamic conju-
gate forces. More general case of the non-associated plasticity and
non-associated damage, when not only temperature-softening but
also damage-softening is taken into account is due to Egner (2009).

In the present analysis a general phenomenological model, based
on the irreversible thermodynamics, is formulated and used to de-
scribe the dissipative elastic–plastic-damage material in the small
strain range. A special attention is paid to the proper description of
coupling between heating rate and two dissipative phenomena:
plasticity and damage, taking place in the material subjected to non-
isothermal conditions. Both thermal softening and damage soften-
ing are accounted for and the consequences of coupling in
consistency conditions and loading/unloading conditions are stud-
ied in detail.

2. General thermodynamical model of dissipative materials

2.1. Basic assumptions

We consider a closed thermodynamic system that is susceptible
of several possibly coupled dissipative phenomena (like plasticity,
damage, phase changes, frictional slips on closed crack lips etc.,)
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that are formalized on the macroscopic level by the use of a proper
set of state variables. The motions of the system obey the funda-
mental laws of continuum mechanics (conservation of mass, con-
servation of linear momentum, conservation of angular
momentum) and two laws of thermodynamics written here in
the local form:

� Conservation of energy

q _u� _eijrij � r þ qi;i ¼ 0 ð1Þ

� Clausius–Duhem inequality

q_s� r
h
þ

qi;i

h
� qi

h;i
h2 P 0 ð2Þ

where q is the mass density per unit volume; r is the stress tensor;
u is the internal energy per unit mass; e is the strain tensor; r is the
distributed heat source per unit volume; q is the outward heat flux;
s is the internal entropy production per unit mass and h is the abso-
lute temperature.

Depending on the scale, different approaches may be used in or-
der to describe an overall structural response of a dissipative struc-
ture on the macro-scale. In general, micro-mechanical models
relate the macro-properties and the macro-response of a structure
to its microstructure. In such approach the rearrangements of mi-
cro-structure are discrete and stochastic phenomena induced by a
number of weakly or strongly interacting micro-changes that influ-
ence the overall structural response. The micro-mechanical models
have the advantage of being able to sustain heterogeneous struc-
tural details on the micro-scale and meso-scale, and to allow a mi-
cro-mechanical formulation of the evolution equations based on
the accurate micro-changes growth processes involved (cf. Voyia-
djis et al., 2007; Boudifa et al., 2009; Aboudi, in press).

Continuum mechanics approach, applied in the present work,
provides the constitutive and damage evolution equations in the
framework of thermodynamics of irreversible processes. The mate-
rial heterogeneity (on the micro- and meso-scale) is smeared out
over the representative volume element (RVE) of the piece-wise
discontinuous material. The true state of material within RVE, rep-
resented by the topology, size, orientation and number of micro-
changes, is mapped to a material point of the quasi-continuum.
The true distribution of micro-changes within the RVE, and the cor-
relation between them are measured by the change of the effective
constitutive properties. The micro-structural rearrangements are
defined by the set of state variables of the scalar, vectorial or ten-
sorial nature (cf. Murakami and Ohno, 1980; Chaboche, 1997a;
Skrzypek et al., 2008; Ganczarski et al., 2010).

In the case of infinitesimal deformation the total strain e can be
expressed as the sum of the elastic (reversible) strain eE, inelastic
(irreversible) strain eI, and thermal strain eh:

eij ¼ eE
ij þ eI

ij þ eh
ij ð3Þ

In the process of deformation, various microstructural rearrange-
ments of material structure may be induced, for example the
changes in density and configuration of dislocations, the develop-
ment of microscopic cavities, changes from primary to secondary
phase etc. All these rearrangements may contribute to both revers-
ible and irreversible strains (cf. Abu Al-Rub and Voyiadjis, 2003),
therefore:

eE
ij ¼ ee

ij þ
Xn

k¼1

eEk
ij ; eI

ij ¼
Xn

k¼1

eIk
ij ; ek

ij ¼ eEk
ij þ eIk

ij ; k ¼ 1;2; . . . ;n

ð4Þ

where ee
ij is a ‘‘pure’’ elastic strain, and eEk

ij ; eIk
ij are respectively the

reversible and irreversible components of the total strain ek
ij induced

by k-th dissipative phenomenon (see Fig. 1), e.g. plastic flow (k = p),
damage (k = d), phase change (k = ph) etc. For example, in the case of
thermo-elastic–plastic-damage material the total strain tensor is
expressed as

eij ¼ ee
ij þ eEd

ij|fflfflfflffl{zfflfflfflffl}
eE

ij

þ ep
ij þ eId

ij|fflfflfflffl{zfflfflfflffl}
eI

ij

þeh
ij ð5Þ

while its damage induced component, ed
ij, consists of both reversible

(Ed) and irreversible (Id) damage strain terms

ed
ij ¼ eEd

ij þ eId
ij ð6Þ

2.2. State variables

The irreversible rearrangements of the internal structure can be
represented by a group of state variables describing the current
state of material microstructure:

fKkg; k ¼ p; d;ph; . . . ð7Þ

where Kk may be scalars, vectors or even rank tensors. For damage
description, in the case where the damaged material remains iso-
tropic, the current state of damage is often represented by the scalar
variable Kd denoting the volume fraction of cracks and voids in the
total volume.

Damage acquired orthotropy requires a second order tensor, for
example the classical (Murakami and Ohno, 1980) tensor:

Kd ¼ D ¼
X3

i¼1

Dini � ni ð8Þ

where Di ¼ dAd
i =dAi denotes the ratio of cracks and voids area to the

total area on the principal plane of normal unit vector n. In the most
general case of anisotropy the description of damage needs to be
embodied in an eight-order tensor (cf. Cauvin and Testa, 1999),
while the principle of strain equivalence allows using fourth-order
tensors.

For the phase transformation analysis the scalar variable

Kph ¼ n ¼ dVs

dV0 ð9Þ

is commonly adopted (cf. Egner and Skoczeń, 2010), which denotes
the volume fraction Vs of the martensite in the total volume V0 of
the martensite-austenite representative volume element, if mar-
tensitic transformation c ? a0 is considered. However, a scalar var-
iable is not capable of describing the acquired anisotropy due to
partially directional nature of the martensitic inclusions in the
austenitic matrix. Therefore, instead of scalar variable (9) a sec-
ond-order tensor can be defined in analogy to (8):

Fig. 1. Components of the strain tensor induced by k-th dissipative phenomenon.
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