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a b s t r a c t

In this work, we present a novel technique to find approximate minimum energy configurations for thin
elastic bodies using an instance of dynamic programming called the Viterbi algorithm. This method can
be used to find approximate solutions for large deformation constrained buckling problems as well as
problems where the strain energy function is non-convex. The approach does not require any gradient
computations and could be considered a direct search method. The key idea is to consider a discretized
version of the set of all possible configurations and use a computationally efficient search technique to
find the minimum energy configuration. We illustrate the application of this method to a laterally con-
strained beam buckling problem where the presence of unilateral constraints together with the non-con-
vexity of the energy function poses challenges for conventional schemes. The method can also be used as
a means for generating ‘‘very good’’ starting points for other conventional gradient search algorithms.
These uses, along with comparisons with a direct application of a gradient search and simulated anneal-
ing, are demonstrated in this work.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The aim of this work is to demonstrate a new technique based
on dynamic programming (Bellman, 1954) to obtain minimum en-
ergy configurations for certain types of elasticity problems. Though
instances of dynamic programming have been used for various
purposes, hitherto such an approach has not been exploited in
elasticity, because dynamic programming is generally used as a
technique to solve certain kinds of discrete problems. The exten-
sion of dynamic programming to problems in elasticity enables a
new perspective to solve these problems. A specialized version of
dynamic programming called the Viterbi algorithm (Viterbi,
1967) is utilized here. This algorithm has been used to find global
minima of a variety of cost functions in a number of applications
such as in communication theory (Forney, 1973), computer vision
(Oliver et al., 2000) and peptide sequencing (Fischer et al., 2005)
etc. This work introduces the application of Viterbi algorithm to
problems with unilateral constraints in elasticity.

To explain the working of the algorithm, an example problem of
finding the minimum energy configuration of a cantilever beam
under the action of compressive as well as lateral tip loads, con-
fined to deform within two lateral walls (see Fig. 1) is solved in this
work. This problem is chosen because it is relatively easy to eval-

uate the performance of the algorithm. The problem is first discret-
ized by assuming the beam to be a connection of discrete links. To
find the global minimum, we search through the configurations of
the beam. This search can obviously only be performed on finite
sets. So the space of possible configurations is discretized, also
known in this paper as range discretization. The main idea behind
the algorithm is to consider this finite subset of all possible config-
urations of the beam and cleverly search through to find the lowest
energy configuration in this discretized space.

Conventional gradient descent methods for minimization per-
form extremely well for smooth and/or convex functions and/or
when the initial guess is close to a local minimum. In the case of
heuristic techniques (Yang, 2010; Kirkpatrick et al., 1983) where
the results are heavily dependent on the value of the parameters
involved and choice of the initial guess,1 the solution is not guaran-
teed to be the global minimum. On the other hand for problems
where the energy is non-convex/non-smooth and where there are
constraints such as the cantilever beam problem considered here,
these techniques do not perform well unless one is close to a mini-
mum. For example, gradient search techniques give quadratic con-
vergence rates when one is close to a minimum, but there is no a
priori way to find initial guesses which are close to minima. The
algorithm presented in this work can be used in two ways: a stand-
alone technique for finding the global minimum for the discretized
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problem or as a starting point for using other convex optimization
algorithms (see Section 1.4.1 of Boyd and Vandenberghe (2004)). In-
deed, the latter path provides excellent dividends as can be seen in
Section 6.

The particular problem that we are going to consider in this pa-
per (namely that of a planar Euler beam fixed at one end and free at
the other constrained between two parallel frictionless walls with
a given separating distance) is not new (see Domokos et al., 1997;
Holmes et al., 1999). In Holmes et al. (1999) a related problem of a
planar simply supported beam is considered and a procedure for
finding local equilibria is laid out, based on the notion of a ‘‘hybrid
dynamical system’’. It has been well documented (see e.g. Flaherty
and Keller, 1973), that based on the loading, solutions with differ-
ent types of contact with the side walls appear. The central idea be-
hind the approach developed in Holmes et al. (1999) is the
classification of different kinds of behavior of the beam solutions
with no contact (unconstrained), solutions with one point of con-
tact, solutions with a whole line in contact, solutions with combi-
nation of points and lines of contact etc. They introduce the notion
of solution classes or sheets to specify the particular type of branch
that can arise.

The aim of this paper is not to carry out a complete investiga-
tion of this kind but to illustrate a different strategy that might
possibly be used for a larger variety of problems. The approach
proposed here is based on the following ‘‘direct minimization’’

method: ‘‘Given a large but finite number of possible configura-
tions for a discretized version of the beam, find the ones with the
lowest energy by direct search’’. This strategy will make sense only
if (1) the number of configurations chosen is sufficiently large that
it can approximate the continuum of possibilities to a reasonable
degree of satisfaction and (2) an efficient means for searching
through these configurations that does not suffer from exponential
growth problems, can be found. The first problem can be dealt with
by considering a simple ‘‘range discretization scheme’’ wherein the
beam is divided into N nodes and each node takes on one of M pos-
sible y displacements. While the first step is routine in any numer-
ical scheme, it is the second step that is unique to the method
proposed here. By choosing M sufficiently large while at the same
time restricting the possible values of y to be within the allowed
values, we can simultaneously impose the unilateral wall con-
straints and approach any possible allowed configuration of the
beam as closely as we wish. We then exploit the fact that the en-
ergy functional of the beam possesses a special ‘‘Markov structure’’
that enables rapid searching (using a dynamical programming
technique) in polynomial time rather than exponential time.

In this paper, we will illustrate this technique be considering a
discrete set of configurations that satisfy the wall constraints alone
with no specific restriction being placed on the number or type of
contact with the wall. The proposed approach then answers the
question: ‘‘For a given load, the set of allowed configurations,
which configuration(s) has the least energy’’. Admittedly this par-
ticular problem statement does not capture all the equilibrium
states, since it ignores the local minima. However, it is possible
to find all the local minima (among the set of allowed configura-
tions) by considering a modified version of the algorithm (see
Appendix for details of such an algorithm). We do not pursue this
route here because this will make the illustration of the algorithm
very complex.

A question may arise, as to what is the use of finding only global
minima for such problems when there is a likelihood of local min-
ima which can also serve as stable equilibria. We first note that:

1. We are finding the global minimum for the constrained prob-
lem, not for the unconstrained problem.2

2. Our first aim is to show the feasibility of the algorithm for solv-
ing these kinds of problems without resorting to experimenta-
tion/guesswork.

3. For micro and nano beams where thermal fluctuations become
a major issue, from a statistical mechanical point of view, the
probability of occurrence of a particular configuration is propor-
tional to e(�bE) where b = 1/KT where T is the temperature and E
is the energy of a particular beam configuration. It is then easy
to show that the most likely configuration of the beam is the
one which corresponds to the global minimum.

1.1. Organization of the paper

In this paper, the beam problem is formally stated in Section 2.
In Section 3, the discretization required to use the Viterbi algo-
rithm for the energy minimization problem is set up and based
on this discretization, the labeling for a state is defined. The details
of the Viterbi algorithm are given as an appendix to this paper. Fol-
lowing the setup for the Viterbi algorithm, a brief discussion of the
convergence of this technique is discussed in Section 4. In Section
5, the two algorithms, active-set method and simulated annealing,
are explained and implemented for the beam problem considered.
Section 6 lists the specifications used for the simulations and pre-
sents the discussion of results of the comparison of different meth-
ods for a beam buckling example.

(a)

(b)

Fig. 1. The figure (a) shows a cantilever beam AB fixed at A, constrained to deform
within two walls separated by a distance of 2ylimit. Forces Tx and Ty act at the free
end B as shown. Figure (b) shows the discretized version of the beam, with the dots
representing the nodes of the discretized beam.

2 For the unconstrained problem, the minima can be found analytically.
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