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a b s t r a c t

Starting from the general expression of the free-energy function of a saturated porous medium at finite
deformations in the case of compressible fluid and solid constituents, and from the internal dissipation
increment, the general expressions of the plastic potential and flow rule are deduced together with the
general form of the consistency condition. Reference is made to an elementary volume moving with
the solid skeleton in a Lagrangian description, which is treated as an open system from which the pore
fluid can flow freely in and out.

As a result, a generalisation is provided of the classical Prandtl–Reuss relationship of small strain elas-
toplasticity in single-phase media to finite strain multiplicative (for F) and additive (for the fluid mass con-
tent) elastoplasticity in saturated porous media with compressible constituents.

The following particular cases are analysed in detail: null plastic volume change of the solid constitu-
ent, incompressibility of the solid constituent, incompressibility of both fluid and solid constituents,
quasi-linear theory (in which the solid constituent is assumed to be nearly incompressible, and therefore
undergoing small volume changes), and geometrically linearised theory. The simplified approaches pre-
viously presented in the literature are thus recovered within a unified framework and new, simplified
constitutive assumptions are made.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Papers dealing with the elastoplastic behaviour of porous media
at finite strains typically reflect the two historical approaches in
the literature to the constitutive modelling of porous media,
namely: mixture theories and the so-called ‘purely macroscale the-
ories’. In the former, the porous media are represented by super-
posed and interacting continua and the field equations of each
constituent are derived from averaging processes (Morland,
1972; Bowen, 1976, 1982), whereas the latter were first proposed
by Biot (1972, 1973, 1977) and later by Coussy (1989), and assume
that the standard concepts of continuum mechanics are still rele-
vant on a macroscale (Coussy et al., 1998). It is worth recalling that
it is generally accepted that an equation is missing in mixture the-
ory for a saturated porous medium (e.g. Svendsen and Hutter,
1995), so several approaches have been suggested to overcome this
drawback (see De Boer, 1996, for a review of the various propos-
als). Within this framework, Gray and Miller (2005) have recently
proposed a thermodynamically constrained averaging theory start-
ing from the microscale constituent continua to the macroscale.

This approach was later applied by Gray and Schrefler (2007) to
small-strain, multiphase media, recovering the traditional form of
Biot’s coefficients.

Within the framework of mixture theories, the first papers tak-
ing the elastoplastic behaviour of the solid material into account
are those by Morland (1972), Kojić and Cheatham (1974), De Boer
and Kowalski (1983), and De Boer and Ehlers (1986), each of them
based on different simplifying assumptions, such as geometrically
linearised theory, the special multiplicative decomposition of the
finite deformation gradient F, the incompressibility of the fluid
and solid constituents, or the small, elastic strains of the solid con-
stituent. Among the first works based on ‘purely macroscale theo-
ries’, there are those by Carter et al. (1977, 1979) and Prevost
(1980), that consider incompressible solid constituents and are
based on the Jaumann stress rate in an updated Lagrangian ap-
proach (see also Meroi et al., 1995). In particular, the latter
assumption may lead to unphysical responses (Johnson and Bam-
mann, 1984), and that is why the most recent solutions are based
on hyperelastic formulations.

It is generally agreed that the assumption of incompress-
ibility of the solid grains immensely simplifies the relationships
(Bennethum, 2006), because the coupling between the solid and
fluid phases is much weaker in this case. That is why the compress-
ibility of the solid constituent has mostly been neglected in the
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engineering applications and constitutive models for considering
porous media at finite strain proposed so far. For instance, Ehlers
(1991), Borja and Alarcon (1995), Diebels and Ehlers (1996) and
Larsson and Larsson (2002), Sanavia et al. (2002) all considered
incompressible solid constituents. Alternatively, the compressibil-
ity of the solid constituents has been considered by means of sim-
plifying assumptions: Advani et al. (1993) and De Boer and Bluhm
(1999) adopted the semilinear theory suggested by Biot (1973),
Coussy (1995) proposed a linear extension of Biot’s classical poro-
elasticity to small (not necessarily infinitesimal) deformations,
Armero (1999) treated the compressibility of the constituents in
a simplified way, considering Biot’s parameter as a constant (as
in linear theory), Bernaud et al. (2002) considered small elastic
strains associated with large plastic deformations, thus obtaining
constant Biot coefficients, Larsson et al. (2004) identified the solid
constituent with the fibre bundles being wetted with resin in the
processing of fibre composite materials and neglected the role of
the intergranular stress on the compaction of the solid constituent,
whereas Borja (2006) proposed a geometrically nonlinear theoret-
ical framework based on the current configuration in which the
definition of effective stress proposed by Nur and Byerlee (1971)
for small strains is recovered with non-constant coefficients.

The compressibility of the solid constituents within an elasto-
plastic model of porous media at finite strains was considered by
Ehlers (1993), who provided the general functional dependence
of constitutive relationships within the framework of mixture the-
ories for second-grade porous materials, working on the simplify-
ing assumption that the solid constituents can only undergo
reversible volume changes. Unfortunately, the effects of the micro-
scopic volume changes of the solid constituent on the macroscopic
deformation of the solid skeleton were not discussed clearly.

Gajo (2010) recently proposed a fairly general method for defin-
ing the free energy density function of saturated porous materials
with compressible solid and fluid constituents within the frame-
work of ‘purely macroscale theories’. Reference was made to an
elementary volume moving with the solid skeleton in a Lagrangian
description, so – in contrast with mixture theories – the free en-
ergy density is not the simple sum of the free energies of the single
constituents. The aim of the present work is to exploit the general
expression of the free energy density function proposed by Gajo
(2010) to extend a widely-adopted, finite-strains, elastoplastic
constitutive approach for single-phase media (e.g. Lubliner, 1990;
Maugin, 1992; Simo, 1998) to saturated porous media; this is in
the conviction that the proposed extension is not limited to the
particular constitutive approach to single-phase media taken into
account, although the definition of the ‘plastic deformation rate’
is somewhat restricted, because it is constrained by the need to
provide consistent evaluations of the dissipation rate in the case
of incompressible fluid constituent.

The elementary volume is treated as an open system from
which the pore fluid can flow freely in and out. As a result, the
strain-like variables are a suitable measure of the solid skeleton
deformation and the pore fluid mass content, whereas the work
conjugated stress-like quantities are the appropriate measure of
the total stress (which is work-conjugated to the selected measure
of the solid skeleton deformation) and the chemical potential of
the pore fluid. The usual multiplicative decomposition of the defor-
mation gradient F into an elastic Fe and a plastic Fp part is associ-
ated with the additive decomposition of the mass content of pore
fluid into an elastic and a plastic part, as first proposed by Armero
(1999). The resulting constitutive model takes large-strain micro-
scopic, either reversible or irreversible, volume changes of the solid
constituent into account. The classical Prandtl–Reuss relationships
of the geometric linear theory for single-phase media are thus gen-
eralised to the finite-strain multiplicative elastoplasticity for satu-
rated porous media with compressible constituents.

The content of the paper can be outlined as follows. The as-
sumed kinematic relations with the usual intermediate configura-
tion and the Clausius–Planck inequality are described in Sections
2 and 3, respectively, whereas the hyperelastic formulation pro-
posed by Gajo (2010) is briefly recalled and extended to the con-
text of irreversible deformations in Section 4. The Clausius–Planck
inequality is subsequently exploited in Section 5 for deducing the
basic structure of the elastoplastic relationships. The consistency
condition and the hyperelastoplastic rates are given in Section 6,
in the general case of irreversible volume changes of the solid
constituents. In Appendix C the following particular cases are
analysed in detail: (i) null plastic volume changes in the solid
constituent; (ii) the incompressibility of the solid constituent;
(iii) the incompressibility of both the fluid and the solid constitu-
ents; (iv) quasi-linear theory (in which the solid constituent is
assumed to be nearly incompressible, thus undergoing small
volume changes, Biot, 1973); and (v) geometrically linearised the-
ory. As a particular case of item (v), the approach proposed by
Loret and Harireche (1991) and by Coussy (2007) for saturated
porous media at small strains with solid constituents undergoing
only reversible volume changes is fully recovered. Although the
constitutive relationships are proposed for the intermediate
configuration, useful hints are given for defining the constitutive
relationships in the reference or in the current configuration
as well.

In the most general case, the constitutive equations turn out to
have a coupling of elastic and plastic properties (i.e. elastoplastic
coupling) associated with a non-symmetric tangent operator. The
relationships are largely simplified for a null plastic volume change
of the solid constituents (case i), however, or for the incompress-
ibility of the solid constituents (cases ii and iii), because the tan-
gent constitutive operator becomes symmetric due to the
associated flow rule, despite the elastoplastic coupling, which dis-
appears only in the case of geometrically linearised theory (case v),
where the tangent constitutive operator is symmetric for any kind
of behaviour of the solid constituent (provided the flow rule is
associated).

Notation: four tensorial products will be used, that can be de-
fined as follows:

ðA� BÞ½C� ¼ ðB � CÞA and ðA � BÞ½C� ¼ 1
2
ðACBT þ ACT BTÞ;

ðA � BÞ½C� ¼ ACBT and ðA�BÞ½C� ¼ ACT BT ;

for every second-order tensor A, B and C.

2. Kinematic relations

Let x = u(X, t) denote the current position (with x 2 B in the cur-
rent configuration BÞ of the solid skeleton particle having the ini-
tial position X 2 B0 in the reference configuration, B0. Moreover,
let F = Gradu, and J = detF denote the deformation gradient and
its Jacobian, respectively, whereas L ¼ _FF�1 is the spatial gradient
of the spatial velocity field (i.e. gradv). The current infinitesimal
volume dX of the solid skeleton is obviously related to its initial
material volume dX0, through dX = JdX0.

The volume occupied by the pore fluid in the reference config-
uration is n0 dX0, where n0 is the initial porosity in the reference
configuration; let n denote the current porosity. If qw and qw0 de-
note the current and the initial density of the pore fluid, respec-
tively, let Jw denote their ratio, namely Jw = qw0/qw. The initial
pore fluid mass content in the infinitesimal volume of solid skele-
ton dX0 is

d ~mw0 ¼ qw0n0 dX0; ð1Þ

whereas the fluid mass content in the current configuration is
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