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1. Introduction

Since the pioneering work of Volterra [1] and Lotka [2]
in the mid-1920s, there has been increasing interest in
investigating the dynamical behaviors of predator–prey
models in both ecology and mathematical ecology [3–
11]. In particular, one of the important dynamical
predator–prey behaviors, such as periodic phenomena
and bifurcation has become even more interesting

[6–10,12–24]. In 1980, Freeman [25] proposed a most
popular predator–prey model with Michaelis–Menten-
type functional response:

dx1

dt
¼ rx1 1 � x1

K

� �
� cx1x2

m þ x1
;

dx2

dt
¼ x2 �d þ fx1

m þ x1

� �
;

x 0ð Þ > 0; y 0ð Þ > 0;

8>>>><
>>>>:

(1)

where x1, x2 denote the population of preys and predators
at time t, respectively. r, K, c, m, d, and f are positive
constants that denote the prey’s intrinsic growth rate,
carrying capacity, capturing rate, half-saturation constant,
predator death rate, maximal predator growth rate,
respectively. For more details about the model, the reader
is referred to [25].

Considering that in many situations, predators must
search and share or compete for food, Arditi and Ginzburg
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A B S T R A C T

In this paper, a delayed predator–prey model with Hassell–Varley-type functional

response is investigated. By choosing the delay as a bifurcation parameter and analyzing

the locations on the complex plane of the roots of the associated characteristic equation,

the existence of a bifurcation parameter point is determined. It is found that a Hopf

bifurcation occurs when the parameter t passes through a series of critical values. The

direction and the stability of Hopf bifurcation periodic solutions are determined by using

the normal form theory and the center manifold theorem due to Faria and Maglhalaes

(1995). In addition, using a global Hopf bifurcation result of Wu (1998) for functional

differential equations, we show the global existence of periodic solutions. Some numerical

simulations are presented to substantiate the analytical results. Finally, some biological

explanations and the main conclusions are included.
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[3] introduced and studied the following ratio-dependent-
type functional response model:

dx1

dt
¼ rx1 1 � x1

K

� �
� cx1x2

mx2 þ x1
;

dx2

dt
¼ x2 �d þ fx1

mx2 þ x1

� �
;

x 0ð Þ > 0; y 0ð Þ > 0

8>>>>>><
>>>>>>:

(1.2)

Since the functional response depends on the predator
density in a different way, Hassel and Varley [26] recon-
structed the predator–prey model with Hassell–Varly-type
functional response, which takes the following form:

dx1

dt
¼ rx1 1 � x1

K

h i
� cx1x2

mxg
2 þ x1

;

dx2

dt
¼ x2 �d þ fx1

mxg
2 þ x1

" #
;

x 0ð Þ> 0; y 0ð Þ> 0;

8>>>>>>>><
>>>>>>>>:

(1.3)

where g 2 (0,1) is called the HV constant. Generally, the
consumptions of prey by the predator throughout its past
history governs the present birth rate of the predator.
Motivated by this point of view, Wang [27] introduced and
investigated the periodic solutions to the following
delayed predator–prey model:

dx1 tð Þ
dt

¼ x1 tð Þ a tð Þ � b tð Þx1 t � t tð Þð Þ � c tð Þx2 tð Þ
mxg

2 tð Þ þ x1 tð Þ

" #
;

dx2 tð Þ
dt

¼ x2 tð Þ �d tð Þ þ r tð Þx1 tð Þ
mxg

2 þ x1

" #
;

x 0ð Þ0; y 0ð Þ > 0

8>>>>>>>>><
>>>>>>>>>:

(1.4)

with the following initial condition:

x1 tð Þ ¼ ’ uð Þ; u 2 ½�d; 0�; ’ 0ð Þ ¼ ’0 > 0;

x2 tð Þ ¼ c uð Þ; u 2 ½�d; 0�; c 0ð Þ ¼ c0 > 0;

(
(1.5)

where d ¼ supt 2 ½0;v� t tð Þf g; ’; c 2 C �d; 0½ �ð Þ with the norm
xk k ¼ supt 2 �d;0½ � x tð Þj j. It is worth pointing out that during

the course of the predator–prey interaction when pre-
dators do not form groups, one can assume that the HV
constant is equal to 1, that is, g = 1. Moreover, it is more
reasonable to incorporate the delay into Hassell–Varly-
type functional response. From the point of view of biology,
we will consider the following model with delayed
Hassell–Varly-type functional response:

dx1

dt
¼ x1 a � bx1 t � tð Þ � cx2 t � tð Þ

mx2 t � tð Þ þ x1 t � tð Þ

� �
;

dx2

dt
¼ x2 �d þ rx1 t � tð Þ

mx2 t � tð Þ þ x1 t � tð Þ

� �
8>>><
>>>:

(1.6)

In this paper, we will devote our attention to
investigating the properties of a Hopf bifurcation of system
(1.6), that is to say, we shall take the delay t as the
bifurcation parameter and show that when t passes
through a certain critical value, the positive equilibrium
loses its stability and a Hopf bifurcation will take place.
Furthermore, when the delay t takes a sequence of critical
values containing the above critical value, the positive
equilibrium of system (1.6) will undergo a Hopf bifurca-
tion. In particular, by using the normal form theory and the
center manifold reduction due to Faria and Maglhalaes
[28], the formulae for determining the direction of Hopf
bifurcations and the stability of bifurcating periodic
solutions are obtained. In addition, the existence of
periodic solutions for t far away from the Hopf bifurcation
values is also established by means of the global Hopf
bifurcation result of Wu [29].

In order to obtain the main results of our paper,
throughout this paper, we assume that the coefficients of
system (1.6) satisfy the following condition:

H1. am2 + cd � cr > 0, r > d

This paper is organized as follows. In Section 2, the
stability of the positive equilibrium and the existence of
a Hopf bifurcation at the positive equilibrium are
studied. In Section 3, the direction of Hopf bifurcation
and the stability of bifurcating periodic solutions on the
center manifold are determined. In Section 4, numerical
simulations are carried out to illustrate the validity of
the main results. In Section 5, some conditions that
guarantee the global existence of the bifurcating
periodic solutions to the model are given. Biological
explanations and some main conclusions are drawn in
Section 6.

2. Stability of the equilibrium and existence of the local
Hopf bifurcation

In the section, by analyzing the characteristic equation
of the linearized system of system (1.6) at the positive
equilibrium, we investigate the stability of the positive
equilibrium and the existence of the local Hopf bifurca-
tions occurring at the positive equilibrium.

Considering the biological meaning, we only study the
property of a unique positive equilibrium (i.e., coexistence
equilibrium). It is easy to see that under the hypothesis
(H1), system (1.6) has a unique positive equilibrium
E� x�1; x�2
� 	

, where

x�1 ¼
am2 þ cd � cr

abm
; x�2 ¼

r � dð Þ am2 þ cd � cr
� 	

abdm2

Let u1 tð Þ ¼ x1 tð Þ � x�1; u2 tð Þ ¼ x2 tð Þ � x�2; then, system
(1.6) takes the following form:
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