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a b s t r a c t

This study applies two analytical approaches, Laplace transform and normal mode methods, to investi-
gate the dynamic transient response of a cantilever Timoshenko beam subjected to impact forces. Explicit
solutions for the normal mode method and the Laplace transform method are presented. The Durbin
method is used to perform the Laplace inverse transformation, and numerical results based on these
two approaches are compared. The comparison indicates that the normal mode method is more efficient
than the Laplace transform method in the transient response analysis of a cantilever Timoshenko beam,
whereas the Laplace transform method is more appropriate than the normal mode method when analyz-
ing the complicated multi-span Timoshenko beam. Furthermore, a three-dimensional finite element can-
tilever beam model is implemented. The results are compared with the transient responses for
displacement, normal stress, shear stress, and the resonant frequencies of a Timoshenko beam and Ber-
noulli–Euler beam theories. The transient displacement response for a cantilever beam can be appropri-
ately evaluated using the Timoshenko beam theory if the slender ratio is greater than 10 or using the
Bernoulli–Euler beam theory if the slender ratio is greater than 100. Moreover, the resonant frequency
of a cantilever beam can be accurately determined by the Timoshenko beam theory if the slender ratio
is greater than 100 or by the Bernoulli–Euler beam theory if the slender ratio is greater than 400.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamic transient response of a beam is an important topic
in engineering applications. Although the Bernoulli–Euler beam
theory (classical beam theory) is most widely used, it has no upper
bound for the wave velocity and overestimates the natural fre-
quencies. Moreover, the Bernoulli–Euler beam theory provides
accurate results for slender beams rather than for thick beams.
Timoshenko (Timoshenko, 1921, 1922) improved the beam theory
by including the influence of shear and rotary inertia. Therefore,
the Timoshenko beam theory not only has upper bounds for wave
velocities but also agrees well with the natural frequencies and
mode shapes of the exact two-dimensional theory (Fung, 1965;
Graff, 1973; Labuschagne et al., 2009). Consequently, the Timo-
shenko beam theory is more appropriate for analyzing transient re-
sponses, especially in situations involving high frequency
vibrations and thick beams. Stephen and Puchegger (2006) made
a comparison of the resonant frequencies of bending vibration of
a short free beam to test the valid frequency range of Timoshenko
beam theory.

In this study, the Laplace transform method and the normal
mode method are employed to investigate the transient response
of a Timoshenko cantilever beam subjected to impact loading.
The Laplace transform method can be classified into two ap-
proaches for inverse transformation: theoretical and numerical in-
verse approaches. Although the theoretical inversion is able to
yield the exact solution (ray solution), the integration in a complex
plane is difficult, and the numerical calculation time is extensive.
From this perspective, the numerical Laplace inversion is needed
because inverse transforms can be obtained more easily and effi-
ciently. Abundant literature is available that discusses the methods
of numerical inversion of Laplace transformation, and they can be
classified into four groups (Davies and Martin, 1979). The first
group contains methods that represent the function using polyno-
mials. This group contains several mathematical approaches such
as Legendre polynomials (Papoulis, 1956), Jacobi polynomials
(Max et al., 1966), Chebyshev polynomials (Lanczos, 1957), and La-
guerre polynomials (Weeks, 1966). The second group contains
methods based on Gaussian quadrature formulas (Piessens,
1970). The third group is a method of trapezoidal integration along
a special integral contour (Talbot, 1979). Duffy compared three
numerical methods of the Laplace inversion and concluded that
Talbot proposed an optimum parameter selection method (Duffy,
1993). The fourth group is comprised of methods based on Fourier
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series. Dubner and Abate used the Fourier cosine transformation to
perform the numerical Laplace inversion (Dubner and Abate,
1968), and Durbin (1974) improved it by including the Fourier sine
transformation into the Dubner and Abate method. As a result, the
numerical error in the Durbin method is independent of time and
valid for the whole period of the series. Crump (1976) proposed a
method based on Dubner and Abate but which converged more
quickly. Honig and Hirdes (1984) made an improvement to reduce
the dependence of discretization and truncation errors on the free
parameters. Because the methods based on the Fourier series have
an excellent accuracy on a wide range of functions (Davies and
Martin, 1979), the Durbin method is used in this study to evaluate
transient responses of the Timoshenko beam.

The normal mode method (i.e., mode superposition or eigen-
function expansion), which expresses a transient response by
superposing all the steady state responses, can provide a long-time
response for numerical calculation. Traill-Nash and Collar (1953)
presented the frequency equations and mode shapes for three
types of end supports and compared them with experimental val-
ues. Anderson and Pasadena (1953) solved the transient response
for a simply supported beam problem. Han et al. (1999) analyzed
the steady state and transient responses for the Bernoulli–Euler,
Rayleigh, shear, and Timoshenko beams. Van Rensburg and Van
der Merwe (2006) discussed natural frequencies and mode shapes
of the Timoshenko beam in detail. Su and Ma (2011) investigated
the dynamic response of a simply-supported Timoshenko beam
by ray and normal mode methods. Although many investigations
of the normal mode method can be found, very few papers pre-
sented the results in close form solutions, which is significant for
the efficiency of the numerical calculation for the normal mode
method. This study provides the close form solutions of the normal
mode method for the cantilever Timoshenko beam and discusses
the numerical results with the Durbin method. The methodology
proposed by Ma’s group (Lee and Ma, 1999; Ma et al., 2001; Ma
and Lee, 2006) for solving a multi-layered media problem is suc-
cessful, and the Durbin method provides the greatest promise of
inversing the Laplace transformation (Davies and Martin, 1979).
These two formulations are integrated to solve dynamics problems
of complex structures.

This paper is organized as follows. Section 2 presents the solu-
tions in the Laplace transform domain and the transient responses
are obtained by the Laplace inverse transformation base on the
Durbin method. In Section 3, the normal mode method is em-
ployed to analyze the Timoshenko cantilever beam subjected to
impact loadings. Based on these two approaches, the comparison
of the transient responses for displacement, shear force and bend-
ing moment is made in Section 4. The normal mode method (the-
oretical method) is used as a standard for a convergence check for
the Laplace transform and Durbin method (numerical method).
Furthermore, the comparisons of resonant frequencies and tran-
sient responses for displacement, normal stress and shear stress
base on the Bernoulli–Euler beam, Timoshenko beam and ABAQUS
FEM are discussed in this section. Finally, a conclusion is made in
Section 5.

2. Transient solutions based on the Laplace transform method

As shown in Fig. 1, a cantilever beam is considered, and the left
endpoint of the beam is denoted as node [1], while the right end-
point of the beam is node [2]. The origin of the coordinate x is set at
node [1]. The beam with length L is subjected to an interior impact
force F0H(t) at x = d, where H(t) is the Heaviside function. The tran-
sient responses of the cantilever beam will be derived and dis-
cussed by the Laplace transform method in this section and the
normal mode method in the next section.

2.1. Solution in the transform domain

Based on the Timoshenko beam theory, the equations of motion
for a beam can be written as

jGA @2ys
@x2 ¼ qA @2ðysþybÞ

@t2 ;

EI @
3yb
@x3 þ jGA @ys

@x ¼ qI @3yb
@x@t2 ;

8<: ð1Þ

where E is Young’s modulus, q is the material density, A is the cross-
sectional area of the beam, I is the cross-sectional moment of iner-
tia, G is the shear modulus, j is the shear coefficient, and yb and ys

denote the transverse displacements due to bending moment and
shear force, respectively. The transverse displacement is expressed
as

yðx; tÞ ¼ ybðx; tÞ þ ysðx; tÞ: ð2Þ

The bending slope of deflection curve, shear force, and bending mo-
ment are given, respectively, by

/ ¼ @yb

@x
; V ¼ jAG

@ys

@x
; M ¼ EI

@2yb

@x2 : ð3Þ

The initial conditions are presented as

ybðx;0Þ ¼ ysðx;0Þ ¼
@ybðx;0Þ

@t
¼ @ysðx;0Þ

@t
¼ 0: ð4Þ

The boundary conditions at x = 0 and x = L are as follows

y½1� ¼ yð0; tÞ ¼ 0; /½1� ¼ @ybð0; tÞ
@x

¼ 0; ð5aÞ

M½2� ¼ MðL; tÞ ¼ EI
@2ybðL; tÞ
@x2 ¼ 0; V ½2� ¼ VðL; tÞ ¼ jAG

@ysðL; tÞ
@x

¼ 0:

ð5bÞ

We applied the Laplace transform over time t with transform
parameter p for boundary conditions in the transform domain.
The Laplace transform of an arbitrary function f(x, t) is defined by

Fðx; pÞ �
Z 1

0
f ðx; tÞe�ptdt; ð6Þ

where p is a positive real number, large enough to ensure the con-
vergence of the integral. By using the Laplace transform, the govern-
ing Eq. (1) become two coupled ordinary differential equations as
follows

jGA d2 ŷs

dx2 ¼ qAp2ðŷs þ ŷbÞ;

EI d3 ŷb

dx3 þ jGA dŷs
dx ¼ qIp2 dŷb

dx :

8<: ð7aÞ

Substituting ŷb ¼ HðpÞ expðkxÞ and ŷs ¼ LðpÞ expðkxÞ into Eq. (7a)
yields

L

d

0 ( )F H t

x

y

z
[1] [2]

Fig. 1. Configuration of the cantilever beam and the dynamic impact force.
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