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a b s t r a c t

A new approach for modeling hysteretic non-linear ferroelectric ceramics is presented, based on a fully
ferroelectric/ferroelastic coupled macroscopic material model. The material behavior is described by a set
of yield functions and the history dependence is stored in internal state variables representing the rem-
anent polarization and the remanent strain. For the solution of the electromechanical coupled boundary
value problem, a hybrid finite element formulation is used. Inside this formulation the electric displace-
ment is available as nodal quantity (i.e. degree of freedom) which is used instead of the electric field to
determine the evolution of remanent polarization. This involves naturally the electromechanical cou-
pling. A highly efficient integration technique of the constitutive equations, defining a system of ordinary
differential equations, is obtained by a customized return mapping algorithm. Due to some simplifica-
tions of the algorithm, an analytical solution can be calculated. The automatic differentiation technique
is used to obtain the consistent tangent operator. Altogether this has been implemented into the finite
element code FEAP via a user element. Extensive verification tests are performed in this work to evaluate
the behavior of the material model under pure electrical and mechanical as well as coupled and multi-
axial loading conditions.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Piezoelectric ceramics belong to the class of the so called smart or
active materials. By applying a high electric field (poling process) it is
possible to obtain a macroscopically piezoelectric material which
couples mechanical and electrical fields. Thus, they are a prime can-
didate for sensors and actuator applications. Also the possibility to
harvest energy due to the piezoelectric effect is the focus of many
developers thinking about energy autonomous devices (Ferrari
et al., 2009). One way to replace conventional actuator or sensor
solutions is to combine the unique properties of piezoelectric
ceramics and get one multifunctional device acting as a sensor, actu-
ator or energy harvester (Marinkovic et al., 2011). To obtain this, de-
vices become more complex and simulation tools are necessary to
predict their behavior. Many commercially available finite element
simulation tools are able model the linear behavior of piezoelectric
devices. As a prerequisite it is necessary to know the poling state,
the internal mechanical stresses and strains as well as the remaining
electric field within the component after the poling-process. The

measurement of these quantities within a piezoceramic component
is not possible in most cases but their influence on the behavior of a
component cannot be neglected. Nonlinear simulations are the only
way to obtain this information and are essential to predict the
behavior of a piezoceramic component. Under the high electric field
which is necessary for the so called poling process, the loadings
reach their maximum and can initiate cracking. Furthermore the
remaining residual stresses after poling influences their behavior,
since the level of total stresses has a crucial influence on the perfor-
mance in high cycle fatigue. The key to optimize and to assess the
reliability of piezoceramic structures is to estimate field quantities
like mechanical stresses, strains and polarization quantitatively dur-
ing poling.

To model complex structures, the finite element approach is
well established. Therefore, an appropriate material model has to
be implemented into a suitable finite element analysis program.
In this work, a 3D user element is developed for FEAP (Taylor,
2011), which allows open interfaces, since the source code is avail-
able. The standard variational formulation in piezoelectricity pre-
sented for example in Maugin (1988) with a scalar electric
potential leads to a non-definite stiffness matrix. Furthermore
the solution of the boundary value problem is a saddle point
(Semenov et al., 2010) and can lead to instabilities in the numerical
solution process. Therefore an alternative formulation with a
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vector potential is proposed in Landis (2002a) with a positive def-
inite stiffness matrix. For this formulation the solution of the
boundary value problem lies in an actual minimum. The nonlinear
material model introduced in this work can be implemented in the
vector potential formulation as it uses the electric displacement ~D
and the strain S as independent variables. However the definition
of the boundary condition for a 3D problem using the vector poten-
tial formulation is not trivial. To avoid this problem the variational
formulation proposed by Ghandi and Hagood (1997) is used which
adds the scalar potential u as primary variable. The electric field is
calculated by the constitutive equations and its relation to the elec-
tric potential is considered as an additional constraint in the weak
formulation (hybrid element). The electric boundary conditions
can be applied in a way identical to the standard formulation.

The phenomenological model for piezoelectric material behav-
ior presented in this work, is able to consider the major nonlinear
effects like ferroelectric, butterfly and ferroelastic hysteresis as
well as coupling phenomena like depolarization due to mechanical
stresses. The aim of this material model is to describe the nonlinear
macroscopic behavior of components. The basic structure is similar
to the one proposed by Kamlah and Böhle (2001). The nonlinear
ferroelastic and ferroelectric behavior is modeled by a set of four
loading criteria (two describing the onset of switching and two
describing the saturation). However the criteria describing the evo-
lution of remanent polarization are formulated based on the elec-
tric displacement ~D instead of the electric field ~E. The history
dependence is stored in internal state variables, the remanent
polarization ~Pi and the remanent strain Si tensor.

The nonlinear material model defines a system of nine coupled
ordinary differential equations (ODE) describing the evolution of
the remanent strain tensor and the remanent polarization vector.
It has to be solved at each Gauss point for each time step. The re-
turn-mapping algorithm is a very efficient and well known method
to integrate nonlinear ODEs. The algorithm presented in this work
is adjusted to this set of evolution equations and is not directly
comparable to an implicit integration scheme with a subsequent
local iterative procedure. It is called a return-mapping algorithm
because a first corrector is calculated if switching takes place and
if a saturation criterion is violated a second corrector has to be ap-
plied. This method is computationally very efficient as it leads to a
single nonlinear equation instead of a set of nonlinear algebraic
equations, which usually have to be solved iteratively. Further-
more, due to some assumptions, a solution of our equation can
be obtained in closed form. This allows calculating the so-called
consistent tangent operator, which contains the derivatives of
the stress and electric field with respect to the independent vari-
ables. This is essential for achieving a quadratic rate of convergence
in the Newton iteration scheme. Due to the three dimensional for-
mulation of the evolution equation, the coding of the differentia-
tion of the integration algorithm is error-prone. To avoid this, the
automatic differentiation method is applied. The open source soft-
ware OpenAD (Utke et al., 2008) automatically generates the For-
tran code for the derivatives. Due to some optimization methods
within OpenAD, this code is very efficient.

This paper is organized as follows. In the first part of this
work, the formulation of the hybrid finite-element is shown as
well as the constitutive model and the integration algorithm. In
the second part, the simulation results for basic verification tests
are shown which are in agreement with experimental observa-
tions from Lynch (1996), Zhou et al. (2005b) and Huber and Fleck
(2001). These tests cover pure ferroelectric and ferroelastic
behavior as well as simultaneous superposed electrical and
mechanical loadings. Finally results of a simulation of a rounded
electrode tip in a stack actuator are presented. Due to the geom-
etry inhomogeneous electric and mechanical fields are present in
this system.

2. Electric displacement based variation principle

Starting with the basic balance equations, mechanical and elec-
tric equilibrium (i.e. quasistatic approach) require

divrþ~f B ¼ 0 ð1Þ
div~D� qB ¼ 0 ð2Þ

where r is the symmetric Cauchy stress tensor,~f B is the body force
per unit volume, ~D is the electric displacement vector and qB is the
free charge per unit area. Two types of mechanical boundary exist
as a mechanical surface force ~f density or a displacement ~u may
be applied to surfaces Sf, Su. Additionally, surface charge density q
can be specified on Sq as well as an electric potential u on Su. Thus
the complete set of Cauchy and von Neumann boundary conditions
are given by:

~u ¼ ~uSu on Su; r �~n ¼~f Sf on Sf ð3Þ
u ¼ uSu on Su; ~D �~n ¼ �qSq on Sq ð4Þ

Assuming small strains, the strain tensor

S ¼ 1
2
r~uþ ðr~uÞT
� �

ð5Þ

is obtained by the linear strain-displacement relation. The super-
script T indicates the transpose of a matrix. The electric field~E is re-
lated to the gradient of the electric potential u by

~E ¼ �ru; ð6Þ

since magnetic effects can be neglected in the quasistatic approach.
Finally for a linear piezoelectric material the relationship for fixed
remanent polarization ~Pi and strain Si is given by

~D ¼ eT : S � Si
� �

þ j �~Eþ~Pi

r ¼ C : ðS � SiÞ � e �~E
ð7Þ

where C are the fourth-order tensor of elasticity at constant electric
field and j is the second-order tensor of dielectric permittivity and
e the third-order tensor of piezoelectricity. Finally the standard
weak form for FEM can be obtained using Eqs. (1)–(6) and introduc-
ing test functions d~u and du:

dG :¼
Z

V
r : dS dV

Z
V

~f Bd~udV �
Z

Sf

~f SF d~udSf þ
Z

V

~DdrudV

�
Z

V
qBdudV �

Z
Sq

qSq dudSq ¼ 0 ð8Þ

Allik and Hughes (1970) used this finite element framework to
model linear piezoelectric materials. Different variational formula-
tions are compared regarding accuracy and distortion sensitivity in
Sze and Pan (1999), but only for linear piezoelectric material. Lan-
dis (2002b) demonstrated the well-known difficulties which arise
in the solution of non-linear problems with the standard formula-
tion. For that he proposed a new formulation by introducing a vec-
tor potential. This showed great improvement for the solution
process but the definition of boundary conditions seems to be a
not trivial problem in the three dimensional case. Ghandi and Ha-
good (1997) developed a hybrid finite-element adding via a La-
grange-multiplier k the constraint ~E ¼ �ru to the standard
variation formulation in Eq. (8):

G� ~u;u;~E;~k
� �

:¼ Gþ
Z

V

~kð~EþruÞdV ð9Þ

Applying the divergence theorem and regrouping terms, they
identified the Lagrange multiplier as the electric displacement.
Thus the weak form for the hybrid finite element is
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