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a b s t r a c t

The Bleustein–Gulyaev (B–G) wave in piezoelectric materials of orthorhombic mm2 crystal class is
reported to be a promising candidate for application to liquid sensing. In this work we present a rigorous
quantitative investigation of the propagation of B–G wave in mm2 crystals in contact with a viscous
liquid. An inversion algorithm is formulated to determine the liquid viscosity from the wave speed
and attenuation data. Numerical results and discussions are given for potassium niobate (KNbO3). The
inversion results demonstrate that the liquid viscosity can be successfully determined from wave prop-
agation characteristics.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Surface acoustic wave (SAW) based sensors have been applied
successfully within many technological fields, such as NDE (non-
destructive examination) of materials, chemistry, biology and envi-
ronment science. This is largely due to their superb sensitivity,
speed and reliability (Hoummady et al., 1997; McMullan et al.,
2000; Vellekoop, 1998; Lee et al., 2009). The development of mi-
cro-acoustic wave sensors in bio-sensing has created the need for
further investigation of surface wave propagation in viscous liquid
loaded piezoelectric structures (Wu and Wu, 2000). A number of
acoustic wave modes have therefore been utilized for investigating
various sensor applications. The influence of a viscous liquid on
acoustic waves propagating in elastic or piezoelectric materials
has been studied by several researchers; this is of particular interest
for the development of liquid viscosity sensors (Zaitsev et al., 2001;
Lee and Kuo, 2006; Zhang et al., 2001; Yang and Wang, 2008).

Zhang et al. (2001) proposed that the Bleustein–Gulyaev (B–G)
wave in mm2 crystal class piezoelectric materials is a promising
candidate for elucidating various characteristics in liquid sensing
applications. The B–G wave does not radiate energy into the con-
tacting liquid and is sensitive to changes in the liquid density
and viscosity. However, Zhang et al. (2001) did not give a detailed
quantitative analysis of the characteristics of the B–G wave propa-
gating in piezoelectric materials loaded with viscous liquid. Guo
and Sun (2008) derived the exact dispersion relation for a B–G
wave propagating in a half-space composed of 6 mm piezoelectric
material loaded with viscous liquid. Their results show that the so-

called electrically shorted boundary condition is more suitable for
liquid sensing applications than the open-circuit boundary condi-
tion. Later, Qian et al. (2010) studied the effect of thickness of
the liquid layer on B–G wave propagation. We also remark that
Du et al. (2010) investigated the properties of shear horizontal sur-
face acoustic wave propagation in layered functionally graded pie-
zoelectric structures loaded with viscous liquid.

Kielczyński and Plowiec, 1989 and Kielczyński et al., 2004 pro-
posed the method of measurement of rheological properties of vis-
coelastic liquids using B–G wave and gave theoretical analyses of
the influence of viscoelastic fluids on propagation of the B–G wave.
They obtained the relations between the change in the complex
propagation constant of the B–G wave and the shear acoustic
impedance of the liquid by applying the theory of perturbation,
which assumes that the liquid does not significantly modify the
properties of the acoustic waves. Later, they also applied their
method to measure liquid viscosity at high pressure for various
temperatures (Kielczyński et al., 2011).

Piezoelectric mm2 crystals support B–G waves and offer prom-
ising substrates for liquid sensing applications (Zhang et al., 2001;
Royer and Dieulesaint, 2000). In particular, one example of the
mm2 crystal piezoelectric material KNbO3, which exhibits a higher
electro-mechanical coupling factor, offers particularly good poten-
tial for liquid sensing applications. Although a lot of work has been
done in respect of the application of surface waves in piezoelectric
media to liquid sensing for various scenarios, little work is avail-
able in the literature on the inversion algorithm of determining li-
quid properties from wave propagation parameters. This is of
utmost importance for implementation of liquid sensing by means
of the surface acoustic wave. In this present study, we will present
a rigous quantitative investigation of the propagation of B–G waves
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in mm2 crystals in contact with viscous liquid. The dispersion rela-
tion for metalized surface boundary conditions is obtained. Also,
we study the inversion algorithm for determination of liquid vis-
cosity from wave propagation characteristics. Numerical results
of attenuation and phase velocity against viscosity, density of the
liquid and wave frequency are given for potassium niobate
(KNbO3). Results for different kinds of error functions are also com-
pared. The results of this study are expected to provide useful data
and guidelines for liquid senor design and development.

2. Description of the problem

The problem considered is concerned with a shear type surface
wave propagating in mm2 piezoelectric material in contact with
viscous liquid, as shown in Fig. 1. The piezoelectric material occu-
pies the half-space x2 < 0 and the liquid covers the half-space
x2 > 0, with x3 the axis parallel to the twofold axis of symmetry.
The x1 and x2 axes are parallel to the X and Y axes of the crystallo-
graphic coordinates ðXYZÞ, respectively. This configuration is called
Y cut-X propagation, which exhibits the maximum electromechan-
ical coupling factor (Nakamura and Oshiki, 1997).

In the absence of body force and free electric charge, the cou-
pled electroelastic governing equations for piezoelectric media
can be written as (Zhang et al., 2001)

Cijkluk;jl þ ekij/;kj ¼ q @2ui
@t2

ejkluk;jl � eik/;ki ¼ 0

8><
>: ði; j; k; l ¼ 1;2;3Þ: ð1Þ

The elastic constants Cijkl can be written into contracted form Cab by
the following rule

a ¼ 9� i� j; b ¼ 9� k� l if i – j; k – l;
a ¼ i ¼ j; b ¼ k ¼ l if i ¼ j; k ¼ l:

ð2Þ

Similarly, the piezoelectric constants eijk can also be put into con-
tracted form eia with the index a observing the rule outlined in
Eq. (2).

For mm2 piezoelectric materials, with x3 direction being the 2-
fold symmetry axis, Eq. (1) takes the following form
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Now consider a harmonic wave propagating in the x1 direction,
with all physical quantities only dependent on the in-plane vari-
ables ðx1; x2Þ, and independent of x3. This case is an example of a
generalized plane strain problem. In this situation, Eq. (3) is further
simplified into
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Similar to the case of piezoelectric materials with 6 mm sym-
metry (Guo and Sun), it can be seen from Eq. (4) that ðu1;u2Þ is
decoupled from ðu3;/Þ. The first two equations of Eq. (4) show that
ðu1;u2Þmay constitute a purely elastic Rayleigh wave, whereas the
last two equations indicate that ðu3;/Þ could comprise a shear type
surface electroelastic wave, a wave more commonly known as the
Bleustein–Gulyaev wave.

The liquid is assumed to be a viscous Newtonian fluid. Suppose
the motion of the liquid is induced only by wave propagation in the
piezoelectric material and also propagates in the form of a har-
monic wave. In regard to this problem, the embroil inertial term
in the Navier–Stokes equation can be omitted. Moreover, the pres-
sure gradient can also be ignored since only shear deformation oc-
curs during wave propagation (Guo and Sun, 2008). Therefore, the
governing equation for the liquid is simplified to

@v3

@t
� ll

ql
r2v3 ¼ 0; ð5Þ

where ql is the mass density of the liquid, ll the dynamic viscous
coefficient of the liquid and v3 is the liquid particle velocity in the
x3 direction.

3. Dispersion relation

For this wave propagation problem, the displacement compo-
nent u3 and electric potential / can be assumed to take the follow-
ing form

u3 ¼Wðx2Þeikðx1�vtÞ ¼Wðx2Þeiðkx1�xtÞ;

/ ¼ Uðx2Þeikðx1�vtÞ ¼ Uðx2Þeiðkx1�xtÞ;
ð6Þ

where k is wave number, v phase velocity of the wave, x angular
frequency, i is the imaginary unit, and Wðx2Þ and Uðx2Þ are un-
known functions of x2.

Substituting the above expressions for u3 and / into the last two
equations of Eq. (4) leads to

C44W 00ðx2Þ þ k2ðqv2 � C55ÞWðx2Þ � k2e15Uðx2Þ þ e24U
00ðx2Þ ¼ 0;

e24W 00ðx2Þ � k2e15Wðx2Þ þ k2e11Uðx2Þ � e22U
00ðx2Þ ¼ 0;

8><
>:

ð7Þ

where the superscript prime denotes differentiation with respect to
the variable x2.

Fig. 1. A piezoelectric substrate in contact with viscous liquid.
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