
A gradient elasticity theory for second-grade materials and higher order inertia

Castrenze Polizzotto
Università di Palermo, Dipartimento di Ingegneria Civile, Ambientale e Aerospaziale, Viale delle Scienze, 90128 Palermo, Italy

a r t i c l e i n f o

Article history:
Received 4 November 2011
Received in revised form 23 March 2012
Available online 26 April 2012

Keywords:
Gradient elasticity
Higher order inertia
Continuum thermodynamics
Dynamics
Wave dispersion

a b s t r a c t

Second-grade elastic materials featured by a free energy depending on the strain and the strain gradient,
and a kinetic energy depending on the velocity and the velocity gradient, are addressed. An inertial energy
balance principle and a virtual work principle for inertial actions are envisioned to enrich the set of tradi-
tional theoretical tools of thermodynamics and continuum mechanics. The state variables include the
body momentum and the surface momentum, related to the velocity in a nonstandard way, as well as
the concomitant mass-accelerations and inertial forces, which do intervene into the motion equations
and into the force boundary conditions. The boundary traction is the sum of two parts, i.e. the Cauchy
traction and the Gurtin–Murdoch traction, whereas the traction boundary condition exhibits the typical
format of the equilibrium equation of a material surface (as known from the principles of surface
mechanics) whereby the Gurtin–Murdoch traction (incorporating the inertial surface force) plays the role
of applied surfacial force density. The body’s boundary surface constitutes a thin boundary layer which is
in global equilibrium under all the external forces applied on it, a feature that makes it possible to exploit
the traction Cauchy theorem within second-grade materials. This means that a second-grade material is
formed up by two sub-systems, that is, the bulk material operating as a classical Cauchy continuum, and
the thin boundary layer operating as a Gurtin–Murdoch material surface. The classical linear and angular
momentum theorems are suitably extended for higher order inertia, from which the local motion equa-
tions and the moment equilibrium equations (stress symmetry) can be derived. For an isotropic material
featured by four constants, i.e. the Lamé constants and two length scale parameters (Aifantis model), the
dynamic evolution problem is characterized by a Hamilton-type variational principle and a solution
uniqueness theorem. Closed-form solutions of the wave dispersion analysis problem for beam models
are presented and compared with known results from the literature. The paper indicates a correct ther-
modynamically consistent way to take into account higher order inertia effects within continuum
mechanics.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The elastic materials considered in the present paper belong to
the class of generalized polar and nonpolar materials studied by
Truesdell and Toupin (1960), Toupin (1962), Mindlin (1964,
1965), Mindlin and Eshel (1968), Green and Rivlin (1964), and
the micropolar materials addressed by Eringen (1966). However,
for simplicity of exposition, we shall limit ourselves to considering
second-grade materials, that is, the first strain gradient materials
addressed by Mindlin (1964), Mindlin and Eshel (1968). More pre-
cisely, we shall follow the so-called Form-II formulation by the lat-
ter authors, whereby the higher order strain tensor is defined as
the first gradient of the standard (second order) strain tensor,
and the resulting stress tensors exhibit some useful symmetry
properties (to be specified shortly). The interest for this class of
materials stems from the possibility of associating to them higher
order inertia effects, that is, the effects produced over such a mate-

rial whenever it is in motion while the kinetic energy depends on
the velocity gradient. This combination makes it possible to dis-
pense with strain singularities at sharp crack tips and to capture
some size effects within the material dynamic behavior, typically
the wave dispersion phenomena manifested by real materials as
polymer foams, high-thoughness ceramics, high-strength metal
alloys, porous materials and the like, Mindlin (1964), Papargyri-
Beskou et al. (2009) and Askes and Aifantis (2011).

Higher order inertia effects were considered in a paper by
Mindlin (1964) dealing with elastic materials with microstructure,
in which the Hamilton principle is employed to derive the relevant
force balance equations and the material constitutive equations.
On setting equal to zero the relative motion of the microstructure
with respect to the continuum, Mindlin’s theory can be shown to
reduce itself to an elasticity theory in which the strain energy de-
pends on the strain and the strain gradient, and the kinetic energy
depends on the velocity and the velocity gradient. Mindlin (1964)
showed the importance of the velocity gradient for the motion
equations to be able to capture wave dispersion phenomena
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(typical of nonhomogeneous materials). Mindlin’s theory proves to
be rather cumbersome for the excessive number of material con-
stants needed (eighteen for isotropic materials with microstruc-
ture, seven in the case of form-II materials).

Germain (1973) also addressed materials with microstructure
with inherent higher order inertia effects, but his intent was only
to establish the pertinent balance equations by means of an ad
hoc extended-form principle of virtual power.

More recently, the role of the velocity gradient and of the inher-
ent higher order inertia terms in the motion equations has been
systematically addressed in a series of studies dealing with the
wave motion and the related dispersion phenomena. There exists
a rich literature on this subject, but we limit ourselves to mention
Altan and Aifantis (1997), Georgiadis et al. (2000), Askes et al.
(2002), Askes et al. (2007), Metrikine and Askes (2002), Askes and
Aifantis (2006, 2009) and Papargyri-Beskou et al. (2009), the review
paper by Askes and Aifantis (2011) and the literature therein. From
the latter group of papers, it emerges clearly how the higher order
inertia models are able to describe realistically wave dispersion
phenomena. Metrikine and Askes (2002), Askes and Aifantis
(2006) and Askes and Aifantis (2009) advanced the concept of
‘‘dynamically consistent’’ gradient model, namely a model endowed
with gradient enhancements in both its stiffness and inertia
features, which renders it capable to remove singularities of the
strain field in the presence of, for instance, a sharp crack tip, and
to realistically describe the dispersive characteristics of the wave
propagation in a nonhomogeneous medium. The higher order iner-
tia terms appearing in the governing equations are there introduced
heuristically by analogy to similar terms related to strain gradient
problems, and their relationship to the kinetic energy remains
unclarified.

Fried and Gurtin (2006) addressed second-grade materials in
which the strain gradient and the velocity gradient engender,
respectively, higher order stresses and higher order inertial forces.
The principle of virtual power (PVP) is used to derive the pertinent
balance equations for the internal and external force system,
including the inertial body and surface forces there arising. Also,
a nonstandard ‘‘inertial virtual power balance’’ law is devised as
an extension to higher order inertia of an analogous law advanced
by Podio-Guidugli (1997) for classical kinetic energy. The latter
law, involving the kinetic energy as a function of the velocity and
the velocity gradient, is used by Fried and Gurtin (2006) for the
evaluation of the inertial forces in terms of acceleration and accel-
eration gradient. Although applicable also to solid materials, this
theory seems to be mostly oriented towards fluid mechanics.

The present paper provides, within the framework of small
deformations, a gradient elasticity theory for continua featured
by a strain energy depending on the strain and the (first) strain gra-
dient, as well as by a kinetic energy depending on the velocity and
the (first) velocity gradient, that is, a theory in which the effects of
both strain gradient and higher order inertia are combined. The
main purpose of the paper is to ascertain the correct thermody-
namically consistent way to take into account the higher order
inertia effects within solid mechanics.

For this purpose, as a preliminary step, some fundamental no-
tions of thermodynamics are presented in Section 2 and cast in a
form suitable for subsequent extensions to second-grade materials
exhibiting higher order inertia effects. In analogy to Podio-Guidugli
(1997) and Fried and Gurtin (2006), an inertial energy balance prin-
ciple is introduced, which parallels the classical energy balance prin-
ciple (first thermodynamics principle). With a terminology
borrowed from Noll (1963), we can state that the latter principle
is associated to the actions (stresses, noninertial forces) arising
from the exterior bodies belonging to our near world (as the solar
system), whereas the former one is instead associated to the
actions (momentum, inertial forces) arising from the totality of

bodies belonging to the remote universe (i.e. the so-called fixed
stars). These two principles are distinct from each other because,
on one hand, the energy balance principle has to be invariant under
change of observer; on the other hand, the inertial energy balance
principle is concerned with quantities (as the velocity and the ki-
netic energy) that must be evaluated with respect to a Galilean ob-
server, that is, one being fixed, or moving uniformly, with respect
to the fixed stars (Noll, 1963; Truesdell and Noll, 1965).

The mentioned extension is realized in Section 3 for a class of
second-grade thermo-elastic materials endowed with a kinetic en-
ergy being a quadratic function of the velocity and the first velocity
gradient. Besides the usual stress and higher order stress tensors, a
momentum and a higher order momentum are introduced with
the cumulative name of (generalized) local momenta. The material
constitutive equations for both sets of stresses and momenta are
evaluated in a particular case of linear isotropic elasticity. The
resulting elasticity model identifies with the well-known Aifantis
model (Aifantis, 1992; Ru and Aifantis, 1993; Altan and Aifantis,
1997), characterized by four material constants, i.e. the two Lamé
constants and two length scale parameters, one (‘s) related to
strain gradient effects, the other (‘d) to higher order inertia.

In Section 4, the equilibrium equations for the noninertial forces
are derived by means of a specific principle of virtual power (PVP).
Although the latter principle is well known from the literature,
(see e.g. Germain (1973), Gurtin (2001) and Fried and Gurtin
(2006)), it is here discussed in detail considering the existence of
singularities (edge lines, corner points) and assuming that the body
and surface external forces cumulate the inertial ones. It is found
that the well-known formula of the boundary traction, t, for sec-
ond-grade materials, whereby t depends not only on the normal
n of the boundary surface, but also on the related mean curvature
K, can be split into two distinct parts, say t ¼ tC þ tGM. Here, tC is
the Cauchy traction, that is, the traction associated to the relevant
(total) stress, T, through the relation tC ¼ n � T, it thus depends only
on the normal n, whereas the remaining part, tGM ¼ t� tC (Gurtin–
Murdoch traction), depends on both n and K. Then, known notions
of surface mechanics (Gurtin and Murdoch, 1975, 1978) are in-
voked to interpret the mentioned traction equation as an equilib-
rium equation for the boundary surface viewed as a material thin
boundary layer, where tGM plays the role of surfacial body force.
It is also found that the external actions applied upon the thin
boundary layer (including the forces acting on the edge lines and
the corner points, if any) satisfy global equilibrium conditions sim-
ilar to the global equilibrium equations for the whole body. As a
consequence, the latter equilibrium equations of the body simplify
such as to include only the body forces and the Cauchy traction,
just like for a standard Cauchy continuum, and thus the Cauchy
theorem for the traction can be applied also within the present
context. It thus emerges that a second-grade material constitutes
a combination of two co-operating structural parts, i.e. a classical
Cauchy continuum (the bulk material) featured by the (Cauchy)
stress T and the traction tC ¼ n � T, as well as a Gurtin–Murdoch
material surface (the thin boundary layer) featured by a surface
stress R and the traction tGM as a surfacial body force.

In Section 5 a nonstandard principle of virtual work (PVW), spe-
cifically devoted to inertial actions, is formulated and applied to
determine the equilibrium equations relating the generalized local
momenta to the inertial forces. It is found that the latter momenta
contribute to the formation of a body momentum, p :¼ q�v, where
�v :¼ v � ‘2

dDv is a (weak) nonlocal (or gradient enhanced) velocity,
and a surface momentum, pS :¼ ‘2

dq@nv. It is also found that the
inertial forces substantiate as inertial body force, bin, distributed
within the bulk material, and inertial surface force, tin, distributed
over the boundary surface of the material, and that these inertial
forces are equal to the negative body and surface mass-accelera-
tions, that is, bin

:¼ �u ¼ �q _�v and tin :¼ �uS ¼ �‘
2
dq@n _v.

2122 C. Polizzotto / International Journal of Solids and Structures 49 (2012) 2121–2137



Download	English	Version:

https://daneshyari.com/en/article/278430

Download	Persian	Version:

https://daneshyari.com/article/278430

Daneshyari.com

https://daneshyari.com/en/article/278430
https://daneshyari.com/article/278430
https://daneshyari.com/

