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a b s t r a c t

The freezing behavior of cementitious materials is investigated in this paper through poromechanical
approach after the Biot–Coussy theory. The material is taken as a porous medium saturated with water
and subject to freezing. The involved thermodynamic laws are recalled to establish the constitutive equa-
tions for the phase change, mass transport and heat transfer processes. As a result, the pore pressure aris-
ing from freezing is converted to macroscopic effective stress through homogenization scheme. The
established model is applied to predict the macroscopic freezing strain of a saturated cement paste
and the theoretical prediction is compared to observed experimental results in (Powers and Helmuth,
1953). The results show that the poromechanical model can reasonably capture the freezing behaviors
from pore pressure accumulation, pore pressure relaxation as well as the thermal shrinkage associated
with the freezing process.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Cementitious materials, after hydration reactions, have extre-
mely intricate microstructure, containing C–S–H gels, mineral
crystals and pores fully or partially occupied by water. The phase
change of confined pore water to ice can build up important pore
pressure and cause material deterioration at macroscopic scale.
For freezing behavior of cementitious materials, the hydraulic
pressure theory (Powers and Helmuth, 1953) was the first system-
atic modeling dedicated to the mechanical effects of freezing water
in pores: it attributed internal pore pressure accumulation to the
viscous flow of liquid water driven by around 9% volumetric in-
crease during water freezing. By this theory, the safety air void
spacing has been correctly predicted for air-entrainment tech-
niques (Powers, 1949). However, the experiments conducted in
(Hodson and Mcintosh, 1960; Beaudoin and MacInnis, 1974)
showed clearly that porous materials could also be damaged by
freezing liquid without volumetric increase during solidification.
A micro-ice-lens model has been developed by Setzer (2001) to
take into account the water and heat transport during micro-ice-
crystal formation. Also based on thermodynamic equilibria of
phase change, Penttala derived material freezing deformation by
effective freezing stress arising from crystallization pressure
(Penttala, 2006). The crystallization pressure of freezing water in
pores was detailed by Scherer (1993, 1999). Coussy and Fen-Chong
(2005) proposed a pore model, taking into account both viscous
water flow and thermodynamic equilibrium between ice and

capillary supercooled water, to describe the pore water cryo-
suction and stress relaxation during freezing. This model was later
developed into a comprehensive thermoporoelastic model for
freezing cementitious materials (Coussy, 2005; Coussy et al., 2008).

However, there is not direct experimental verification for this
theory. We here try to address the poromechanical framework to
the freezing behavior for cementitious materials with specific
and defined porosity presented in (Powers and Brownyard, 1947)
and compare the predicted results with the experiment ones pre-
sented in (Powers and Helmuth, 1953). This paper follows the
same thermoporomechanical approach established so far (Coussy,
2005, 2010; Fabbri et al., 2008; Zuber and Marchand, 2004) and
investigates particularly the freezing strain of saturated cementi-
tious materials with and without entrained air. To this aim, this pa-
per starts with the thermodynamic descriptions for phase
equilibria and phase change for water confined in pores, mechan-
ical constitutive equations are derived from standard poromechan-
ics, and then the mass conservation for water and heat transfer are
expressed in terms of pore water pressure and temperature. Using
the established model, the freezing strain measurements on ce-
ment paste presented in (Powers and Helmuth, 1953) are simu-
lated and concluding remarks are drawn on the basis of the
comparison between the simulated and measured strains.

2. Poromechanical modeling

2.1. Ice-water equilibrium in pores

As a saturated porous material is exposed to freezing, the solid-
ification temperature of pore water depends on the ‘‘throat’’ size
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percolating the pore (Scherer, 1993, 1999). This temperature is of-
ten depressed since the potential of water in small pores is lower
than that of bulk ice at icing-point, i.e. 0.1 �C at atmospheric pres-
sure. For a certain throat size r, the potentials of water and ice are
in equality only when the temperature reaches some depressed de-
grees (supercooling) DT = T � Tf. At this supercooling, it can be as-
sumed that ice occupies all the pores with curvature radius larger
than r and that ice is not to penetrate further to smaller pores un-
less the supercooling DT breaks the ice-water equilibrium. This
principle can be deduced firstly from Gibbs (chemical) potential
equilibrium for bulk water and ice crystal, then the capillary pres-
sure in freezing pore, difference between ice and water pressures
Pi � Pl, can be expressed as:

Pi � Pl ¼ �Sf DT þ q0
i

q0
l

� 1
� �

ðPl � PmÞ; ð1Þ

where Sf ¼ S0
l � S0

i is the melting entropy of ice, q0
l and q0

i are the
initial water and ice density at triple point (T = 273.16 K, Pi = Pl = Pm)
and Pm is the atmospheric pressure (101.325 KPa).

As the freezing water is not confined in small pores, the liquid
pressure, second term in left hand of Eq. (1), can be rather low and
be neglected. However, as water and ice are confined in cementi-
tious materials with low permeability or in undrained condition,
the liquid pressure due to viscous flow of water in pore spaces
may reach the magnitude of 100 MPa (Coussy and Monteiro,
2008). This high pressure can have a significant impact on the liquid
water content in such material because of 9% volume increase
during phase change from water to ice (Coussy and Monteiro, 2009).

In a freezing pore, the mechanical equilibrium between liquid
water and ice crystals can be described by Young-Laplace’s law:

Pi � Pl ¼
2cil

r
; ð2Þ

where cil stands for the interface energy between ice and liquid
water (J/m2). For a drying process of liquid-saturated porous mate-
rials like soil and rock, the van Genuchten equation is well accepted
to express the relationship between pore capillary pressure and
liquid saturation Sl (van Genuchten, 1980),

Pg � Pl ¼ N
� S�1=m

l � 1
h i1�m

; 0 < m < 1; ð3Þ

where Pg is the gas pressure and N
� and m are adjustable constants

related to material pore structure. Again, mechanical equilibrium
between vapor and liquid water obeys to Young-Laplace’s law,

Pg � Pl ¼
2cgl

r
; ð4Þ

where cgl stands for the interface energy between gas and liquid
water (J/m2). Combining Eqs. (2)–(4) provides,

Pi � Pl ¼ N S�1=m
l � 1

h i1�m
; 0 < m < 1 ð5Þ

with definition N ¼ cil=cgl �N
�. We can rewrite Eq. (5) as,

Sl ¼ 1þ Pi � Pl

N

� � 1
1�m

" #�m

; 0 < m < 1: ð6Þ

As water crystallizes in pores, a liquid like layer is assumed to exist
at the interface between ice and solid skeleton (pore wall) and this
part of liquid phase is reported to be crucial for pore water solidifi-
cation process (Takamuku et al., 1997). If this unfrozen liquid layer,
noted by its pore saturation Sr, is included into pore liquid phase,
the above equation can be extended as,

Sl ¼ Sr þ ð1� SrÞ 1þ Pi � Pl

N

� � 1
1�m

" #�m

; 0 < m < 1: ð7Þ

The validity of the above equation can be supported by experimen-
tal observation on cement pastes in (Powers and Brownyard, 1947)
that there is unfrozen water in pores until �78 �C. The authors esti-
mated furthermore that the maximum amount of unfreezable
water wn = 4Vm with Vm as the quantity of water required to cover
the pore internal surface with a single layer of water molecules
(m3/g) (Powers and Brownyard, 1947). Fig. 1 presents the saturation
degrees Sl in terms of depressed temperature DT from the experi-
mental data in Powers and Brownyard (1947) and Eq. (7). Note that
the liquid saturation can be determined in other ways, such as in
(Fen-Chong et al., 2004, 2006; Fen-Chong and Fabbri, 2005; Fabbri
et al., 2006, 2009). To use Eq. (7), the following parameters are re-
tained: Pl ¼ Pm; Sf ¼ 1:2227 MPa � K�1; cil ¼ 0:0409 J �m�2 (Brun
et al., 1977), Sr ¼ 0:085; N ¼ 0:45 MPa; m ¼ 0:41. It can be found
that Eq. (7) can fit Powers and Browyard’s results reasonably well.
However, in most cases ice forms by heterogeneous nucleation in
porous medium at some depressed temperature rather than
immediately at triple point due to energy barrier (Scherer, 1993;
Shaw et al., 2005). As schematically shown in Fig. 1, when ice nucle-
ation is delayed to �1 � C, a large amount of ice is to form instanta-
neously at this delayed nucleation temperature and may create high
pressure. This nucleation delay is to be discussed further in
Section 3.

2.2. Freezing strain and stress

Consider a deformable porous medium with total porosity of /
initially saturated with water. The porosity / excludes the volume
of entrapped and/or entrained voids. Under freezing the pores are
progressively invaded by ice nucleation and occupied by two
phases: the wetting liquid phase (with subscript l) and the non-
wetting ice (with subscript i). The relative volumes of the two
phases satisfy:

/ ¼ /l þ /i; Sl þ Si ¼ 1; ð8aÞ

/J¼l;i ¼ /0SJ þuJ; ð8bÞ

where /0, / stand for initial and current porosities and uJ for partial
porosity changes due to deformation of the porous volume occupied
by the phase J. According to the standard unsaturated poroelasitic-
ity developed by Coussy (2004, 2005, 2010), the linearized form of
constitutive equations for an isotropic porous medium under freez-
ing writes,

Fig. 1. Liquid saturation degree during freezing vs temperature. The void square is
profiled with data from Powers and Brownyard (1947), pp: 955–956, Table 8.6–8.7.
W/C = 0.62, 28 day aged; the dash line is fit by Eq. (7) with Pl = Pm.
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