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a b s t r a c t

We consider boundary value problem in which an elastic layer containing a finite length crack is under
compressive loading. The crack is parallel to the layer surfaces and the contact between crack surfaces are
either frictionless or with adhesive friction or Coulomb friction.

Based on fourier integral transformation techniques the solution of the formulated problems is reduced
to the solution of a singular integral equation, then, using Chebyshev’s orthogonal polynomials, to an infi-
nite system of linear algebraic equations. The regularity of these equations is established. The expressions
for stress and displacement components in the elastic layer are presented. Based on the developed ana-
lytical algorithm, extensive numerical investigations have been conducted.

The results of these investigations are illustrated graphically, exposing some novel qualitative and
quantitative knowledge about the stress field in the cracked layer and their dependence on geometric
and applied loading parameters. It can be seen from this study that the crack tip stress field has a mode
II type singularity.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Stress concentration is often a critical concern because it affects
the durability and reliability of structures and their components.
Stress concentrators in structures can exist as a result of material
composition imperfections (cavities, inclusions) or they can be
caused by technological and structural needs (holes, cuts, etc.). In
either case, analyzing the effects of stress concentrators is very
important.

Stress concentrators in the form of cracks have been intensively
studied in the literature. Since experimental observations indicate
that crack growth is often in the form of opening mode crack
growth instead of mixed mode or pure shear mode crack growth,
the research reported in the literature on the subject of crack
growth has mainly focused on mode I fracture (e.g. Erdogan and
Sih, 1963; Sih, 1974; Bilby and Cardew, 1975; Cotterell and Rice,
1980; Hayashi and Nemat-Nasser, 1981; or Broberg, 1987).

In the majority of works in the literature it is assumed that the
crack surfaces are not in contact. However crack surface contact
can occur under compressive loading and such cracks can pose a
potential risk just as cracks under tensile loading (e.g. Roy et al.,
1999; Deng, 1993, 1995; Dhirendra and Narasimhan, 1998;
Ghonem and Kalousek, 1988; Hallbfack, 1998; Hayashi and
Nemat-Nasser, 1981; Hearle and Johnson, 1985; Isaksson and

Stahle, 2002, 2003; Ishida and Abe, 1996; Hancock, 1999;
Makaryan, 2006; Makaryan et al., 2009; Melin, 1986). Due to the
elimination of crack surface opening, the growth of cracks with
crack surface contact is in the shear mode (or mode II under in-
plane loading conditions).

El-Borgi et al. (2004) considered the problem of a functionally
graded coating bonded to a semi-infinite homogeneous medium
with a crack embedded in the FGM layer and parallel to the free
surface. The composite medium is subjected to a frictional Hertzian
contact traction loading applied to the surface of the graded coat-
ing. The author’s utilize a crack closure algorithm whenever the
mode I stress intensity factors turn out to be negative under the ac-
tion of compressive loads.

Broberg (1987) reported laboratory produced mode II crack
growth in plates in experiments conducted in a combination of
pressure and shear loads. Hearle and Johnson (1985) achieved
shear crack growth in experiments performed on rail steels sub-
jected to a moving point load. Ishida and Abe (1996) carried out
rolling contact tests in a rail/wheel contact fatigue testing machine
and reported sub-surface crack growth in mode II. More recently,
the propagation of cracks parallel with a shear loaded surface
(which are sub-surface horizontal cracks) due to surface traction
caused by contact, have been analytically and numerically investi-
gated by several researchers (e.g. Wong et al., 1996; Jayaraman
et al., 1997, Komvopoulos and Cho, 1997). Melin (1987) concluded
that mode II crack growth in an elastic material would be preferred
over mode I only if the ratio between the critical stress intensity
factors KIIc and KIc is fairly low. The effect of crack surface friction
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on mode II stress intensity factor of a central slant crack in a plate
uniformly loaded in uniaxial compression is discussed by Hammo-
uda et al. (2002). Comparison of predictions by mode II or mode III
criteria on crack front twisting in three or four point bending
experiments was done by Lazarus et al. (2008).

Problems with cracks under compressive forces can be inter-
preted as problems with contact of two separate bodies pressed
against each other (El-Borgi et al., 2006; Keer et al., 1972). In these
problems, the length of the contact zone and the contact pressure
(which is zero at the ends of the contact segment) are the primary
unknowns of the problem.

Practical applications where mode II crack propagation gener-
ally is predicted to prevail are in various applications subjected
to a load combination of a shear stress and a high compressive nor-
mal stress (e.g. gear drives, rolling bearings, railway applications or
structures exposed to earth quakes). However, despite the great
number of investigations, the phenomena of crack initiation and
propagation associated with compressive forces are still not fully
understood.

The large number of available investigations in the literature
(e.g. Broberg (1999), Civelek and Erdogan (1974), Hill (1950),
Hutchinson (1968), Isaksson and Stahle (2002), Liu (1974), Sih
et al. (1966), Sundara Raja Iyengar et al. (1988)) has been mainly
restricted to the non-interacting crack surfaces (i.e. non-contacting
crack surfaces).

In this paper we show that if an elastic layer containing a crack
parallel to the layer boundary surfaces is under compressive load-
ing on the layer boundary surfaces the shear stress can became
infinite at the crack tips and at the same time the normal stress
is finite along the crack line. In other words we show that compres-
sive loading normal to the crack surfaces can lead to a mode II type
stress singularity at the crack tips and can initiate mode II type
crack growth. To that end, the plane problem of an elastic layer,
weakened by a finite-length crack under compressive loading is
considered, in which the crack surfaces are in full contact with
either no friction or with Coulomb friction or a friction given in ad-
vance (i.e. adhesive friction).

Based on the Fourier integral transformation techniques the
solution of the formulated problem is reduced to the solution of
a singular integral equation, and then, using the Chebyshev‘s
orthogonal polynomials, to an infinite system of linear algebraic
equations. The regularity of these equations is established. These
equations are solved numerically for several typical cases and the
resulting stress distributions are described.

2. Problem description and formulation

Let us suppose that an elastic layer occupies the domain
�1 < x <1, �h1 6 y 6 h2 and a finite crack �x0 < x < x0 is located
at y = 0 (see Fig. 1). The layer surfaces y = h1 and y = �h2 are under

the action of certain compressive mechanical forces as shown in
Fig. 1., and the crack surfaces are pressed together so that they
are in full contact. In other words along the crack surfaces the nor-
mal stress satisfy the condition ry(x, ±0) < 0.

This elasticity plane problem can be reduced to solving the bi-
harmonic equation below in Terms of an Airy stress function
(Sneddon and Berry, 1958):

D2Uðx; yÞ ¼ 0: ð1Þ

The stress and displacement’s components can be expressed
through the function U(x,y) as:

ryðx; yÞ ¼
@2Uðx; yÞ
@x2 ; rxðx; yÞ ¼

@2Uðx; yÞ
@y2 ;

sxyðx; yÞ ¼ �
@2Uðx; yÞ
@x@y

; ð2Þ

uxðx; yÞ ¼
1
E

Z
@2Uðx; yÞ
@y2 dx� m

@Uðx; yÞ
@x

þ U0

 !
; ð3Þ

uyðx; yÞ ¼
1
E

Z
@2Uðx; yÞ
@x2 dy� m

@Uðx; yÞ
@y

þ V0

 !
: ð4Þ

In the above

D2 ¼ @2

@x2 þ
@2

@y2 ð5Þ

is the Laplace operator; E and m are the Young’s modulus and Pois-
son’s ratio, respectively; and

U0 and V0 are constants. Eqs. (1)–(4) are valid for a plane stress
problem. For a plane strain problem E and m should be replaced by
E! E

1�m2 and m! m
1�m . To avoid confusion, the Airy stress function

and the associated stress and displacement quantities for the re-
gions above and below the crack plane will be denoted by a sub-
script ‘‘1’’ or ‘‘2’’. Specifically, the region above the crack plane
�1 < x <1, 0 < y 6 h1 will be assigned the subscript ‘‘1’’, and the
region below the crack plane �1 < x <1, h2 6 y < 0 will be as-
signed the subscript ‘‘2’’.

2.1. Boundary conditions

The boundary conditions will be written in the following form:

rðjÞy ðx; ljÞ ¼ pjðxÞ; sðjÞxyðx; ljÞ ¼ 0; �1 6 x <1;

j ¼ 1;2; l1 ¼ h1; l2 ¼ �h2; ð6Þ
rðlÞy ðx;0Þ ¼ rð2Þy ðx;0Þ; sðlÞxyðx;0Þ ¼ sð2Þxy ðx;0Þ;
uðlÞy ðx;0Þ ¼ uð2Þy ðx;0Þ; �1 6 x <1; ð7Þ

uð1Þx ðx;0Þ ¼ uð2Þx ðx;0Þ x0 < jxj <1;
sð1Þxy ðx;0Þ ¼ sð2Þxy ðx;0Þ ¼ sðxÞ �x0 < x < x0:

(
ð8a;bÞ

In addition to (6), (7), (8a,b) we should add the overall equilibrium
condition of the layerZ 1

�1
xkp1ðxÞdk ¼

Z 1

�1
ð�1Þkxkp2ðxÞdk; k ¼ 0;1 ð9Þ

In (8) the function s(x) represents the distribution of shear stress on
the contacting crack surfaces. In this paper for s(x) we will assume:

sðxÞ ¼
0 for frictionless contact between crack surfaces;

k0ryðx;0Þ for Coulomb friction between crack surfaces;

s0ðxÞ for adhesive friction with a known shear stress:

8><
>:

ð10Þ

where k0 is a Coulomb friction coefficient.
Fig. 1. An elastic layer weakened by a finite length crack and is under the action of
compressive surface forces.
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