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This paper presents a coupled discrete/continuous method for computing lattices and its application to a
masonry-like structure. This method was proposed and validated in the case of a one dimensional (1D)
railway track example presented in Hammoud et al. (2010). We study here a 2D model which consists
of a regular lattice of square rigid grains interacting by their elastic interfaces in order to prove the fea-
sibility and the robustness of our coupled method and highlight its advantages. Two models have been
developed, a discrete one and a continuous one. In the discrete model, the grains which form the lattice
are considered as rigid bodies connected by elastic interfaces (elastic thin joints). In other words, the lat-
tice is seen as a “skeleton” in which the interactions between the rigid grains are represented by forces
and moments which depend on their relative displacements and rotations. The continuous model is
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Interface based on the homogenization of the discrete model (Cecchi and Sab, 2009). Considering the case of sin-
Coupling gularities within the lattice (a crack for example), we develop a coupled model which uses the discrete

model in singular zones (zones where the discrete model cannot be homogenized), and the continuous
model elsewhere. A new criterion of coupling is developed and applied at the interface between the dis-
crete and the continuum zones. It verifies the convergence of the coupled solution to the discrete one and
limits the size of the discrete zone. A good agreement between the full discrete model and the coupled
one is obtained. By using the coupled model, an important reduction in the number of degrees of freedom
and in the computation time compared to that needed for the discrete approach, is observed.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction domains. In the coupled approach, the macroscopic scale was the

intial scale computation. A local discrete computation was done

The aim of this paper is to propose an extension to 2D struc-
tures of the 1D coupled method between discrete and continuum
media proposed in Hammoud et al. (2010). We focus here on the
robustness and the feasibility of the coupled method in the pres-
ence of cracks and stress concentrations.

Actually, the 1D model studied in Hammoud et al. (2010) con-
sisted of a beam resting on an elastic springs. The deflection of
the beam (as well as the nodal parameters) was calculated by using
two approaches; a discrete approach and a macroscopic approach
deduced from the discrete one. A comparison between the re-
sponse of the system obtained by using these approaches showed
the cases where the macroscopic approach cannot replace the dis-
crete one. This difference leaded us to apply a discrete/continuum
coupling method. A new criterion of coupling was developed and
applied at the interface of the discrete and continuum sub-
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on each macroscopic element. A comparison was done between
the nodal parameters computed by the local discrete method and
the continuum one. If a strong difference was observed, a
refinement of the computation scale was done. This procedure of
refinement was necessary in the zone of singularities.

In this present research, a 2D model will be considered. A ma-
sonry pannel can be described by a discrete model or a continuous
model. See Alpa and Monetto (1994), Sab (1996), Cecchi and Sab
(2004), Cecchi and Sab (2004) and Cluni and Gusella (2004), for
example. In the discrete model, the blocks which form the masonry
wall are modeled as rigid bodies connected by elastic interfaces.
Then, the masonry is seen as “skeleton” in which the interactions
between the rigid blocks are represented by forces and moments
which depend on their relative displacements and rotations. The
second model is a continuous one based on the homogenization
of the discrete model. The aim of this paper is to extend the 1D
coupled method of Hammoud et al. (2010) to 2D structures in
the presence of cracks and stress concentrations.

Many coupled approaches between discrete and continuum
media were developed. See among others the works of Broughton
et al. (1999), Curtin and Miller (2003), Wagner and Liu (2003),
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Fish and Chen (2004), Xiao and Belytschko (2004), Ricci et al.
(2005), Klein and Zimmerman (2006), Rousseau et al. (2008)
and Rousseau et al. (2009). In these works, the domain is decom-
posed into sub-domains; discrete, continuum and an interface be-
tween the discrete and continuum sub-domains. A handshake
zone where the two descriptions of material figure can exist at
the interface sub-domain. These approaches are divided into en-
ergy-based or force-based formulations. Briefly, in the energy-
based formulation, it is assumed that the total energy of a domain
can be written as the sum of the energy of the three sub-domains
discrete, continuum and handshake from which it is composed.
The energy of the handshake region is a partition-of-unity blend-
ing of discrete and continuum energy descriptions. For example, a
well-known energy-based method which includes a handshake
region is the bridging domain (BD) method described in Xiao
and Belytschko (2004). Within the BD handshake region, both
the continuum and discrete energies are used, but their contribu-
tions are weighted according to a function 6 that varies linearly
from 1 at the edge of the handshake region closest to the contin-
uum one to 0 at the edge closest to the discrete zone. The total
energy is then minimized subject to the imposed displacement
boundary conditions to obtain the equilibrium configuration of
the system. The approximation inherent to an energy-based cou-
pling of this type leads to errors known as “ghost forces”. The
ghost forces are defined as follows: Consider a model in which
the discrete elements are on their equilibrium state, and the finite
elements are unstressed and undeformed. Physically, this should
be an equilibrium configuration where all forces are zero, and
therefore any residual forces on the discrete element or nodes
that arise in this configuration are unphysical and will lead to
spurious distortions of the domain upon relaxation. These
unphysical forces are the ghost forces. The existence of ghost
forces is, it seems, a necessary consequence of having well-de-
fined energy functional. All energy-based methods mentioned
above, suffer from these forces in various degrees. An alternate
approach is to abandon the energy-based approach and instead
starts from the forces directly. Methods of this type can indeed
eliminate the ghost forces (see Kohlhoff et al., 1991). In these ap-
proaches, there is no handshake zone and strong compatibility
sets the position of the discrete element and the nodes along
the interface zone. A force-based method is based on the follow-
ing philosophy: to eliminate ghost forces, design the method so
that the forces are identically zero when the perfect discrete
sub-domain is in its correct equilibrium state. Since it does not
seem possible to do this in general using an energy functional,
we derive forces without recourse to a total energy. For more de-
tails, an exhaustive literature review of these coupled models has
been given in Hammoud et al. (2010).

In the energy-based and the force-based formulations, the size
of the discrete zone is not defined. It depends on many parameters
as the weight function, the boundary conditions at the interface
zone, etc. In our force-based formulation, there is no handshake
zone and the discrete zone that contains the singularities is fixed
at the beginning of the simulation. It will be controlled by a special
coupling criterion at the interface zone, described in (Section
4.2.2). If the value of this criterion is not small enough to ensure
a convergence, the size of the discrete zone will be increased. This
iterative procedure is repeated until convergence of the coupled
solution to the discrete one is reached.

As for the 1D model (Hammoud et al., 2010), the mechanical
parameters of the system being studied will be calculated in a
way that does not require the calculation of the energy and avoids
the problem of how to partition this energy between the discrete
and continuum zones at the interface. We will calculate the global
rigidity matrices (discrete (KP), continuous (K) and interaction
(K“P)) and then solve a linear system written as follows:
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In this present research, at first, we present the 2D masonry model.
Secondly, we develop the discrete and the continuous models used
to calculate the behavior of the masonry pannel. The continuous
boundary value problem is solved by using the Finite Element
Method. We implement the full continuous and the full discrete
models in a MATLAB code as well as the coupled discrete/continu-
ous one. This case is validated in comparison with a FE software
(ABAQUS). We also develop a numerical bench test in order to prove
that the discrete medium is homogenizable in the case of no singu-
larities. In the case where singularities exist in the structure (a crack
for example), a criterion of coupling between discrete and continu-
ous models, is developed. Near the crack, a discrete zone is used and
farther a FE mesh is employed. The criterion of coupling applied at
the interface of these zones, verify the convergence of the coupled
solution to that discrete. The size of the discrete zone is limited
and a considerable reduction of the DoFs is also observed.

2. The discrete model

The 2D model consists of a regular lattice of square rigid grains
interacting by their elastic interfaces (see Fig. 1).

The in-plane motion of the grain can is described by two dis-
placements and one rotation at the center.

The geometry of the lattice is described hereafter. The position
' in the Euclidean space is formulated as

1

of the center of grain BY, y
follows:
v = iae; + jae,, )

€1, €2, €3 is an orthonormal base...
So the displacement of the B" grain is an in plane rigid body
motion:

u(y) =u’ + o x (y-yY), vyeB’ (3)
where
u’ =ule, +uje, and oY = wies. (4)

If the mortar joint is modeled as an elastic interface, then the con-
stitutive law is a linear relation between the tractions on the block
surfaces and the jump of the displacement:

t=on=K.-d onS. (5)
Ay,
° ® Q ° °
i yl
[ ] ° [ SRR ity S L SRR R -
° ° ° ° °

Fig. 1. Square grains forming the regular lattice.
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