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a b s t r a c t

A complete analytical solution has been obtained of the elasticity problem for a plane containing period-
ically distributed, partially debonded circular inclusions, regarded as the representative unit cell model of
fibrous composite with interface damage. The displacement solution is written in terms of periodic com-
plex potentials and extends the approach recently developed by Kushch et al. (2010) to the cell type mod-
els. By analytical averaging the local strain and stress fields, the exact formulas for the effective
transverse elastic moduli have been derived. A series of the test problems have been solved to check
an accuracy and numerical efficiency of the method. An effect of interface crack density on the effective
elastic moduli of periodic and random structure FRC with interface damage has been evaluated. The
developed approach provides a detailed analysis of the progressive debonding phenomenon including
the interface cracks cluster formation, overall stiffness reduction and damage-induced anisotropy of
the effective elastic moduli of composite.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Mechanical behavior of composite materials is significantly af-
fected by the degree of bonding between the constituents. Interfa-
cial debonding in the form of arc crack is the predominant damage
mode of unidirectional fiber reinforced composite (FRC) under
transverse loading, which results in rapid loss of stiffness and
strength. From the viewpoint of damage-tolerant design of com-
posite structures, it is important to find an optimal balance be-
tween the strength and stiffness. To achieve this goal, an effect of
interface debonding on the performance of composite needs to
be fully understood and adequately implemented in the predictive
models.

There is a body of publications on stiffness prediction for fibrous
composites with interfacial debonding by means of micromechan-
ics. However, the most existing work is based on models of varying
degrees of approximation in the treatment of fiber interaction and
local stress and strain fields. Among them, we mention the ‘‘dilute’’
model (Ju, 1991; Lee and Simunovic, 2001) where interaction of
fibers is neglected. In the ‘‘composite cylinder’’ model used by Teng
(1992) and Tandon and Pagano (1996), interaction between the
fibers is taken into account in the self-consistent manner. The
Mori–Tanaka method-based model by Takahashi and Chou
(1988) assumes debonding to take place over the entire interface.

A dual effective-medium and finite-element study was carried
out by Zheng et al. (2000) and Zhao and Weng (2002) for a single
partially debonded elliptic fiber. In the effective-medium approach,
the fictitious perfectly bonded inclusions were used and the Mori–
Tanaka theory was applied to compute the effective moduli of
composite. To our knowledge, only a few models for the multiple
fibers with imperfect interface are available in literature. Wriggers
et al. (1998) considered debonding by a contact formulation which
can handle adhesional forces up to a prescribed tensile limit on the
contact interface. In the work by Ghosh et al. (2000), interfacial
debonding is accommodated by cohesive zone model, with the
normal and tangential springs tractions expressed in terms of
interfacial separation.

In the unit cell approach (Nemat-Nasser et al., 1982; Golovchan
et al., 1993; Chen and Papathanasiou, 2004; Kushch et al., 2008;
among others), an actual FRC is modeled by the equivalent periodic
microstructure with a unit cell containing a certain number of
inclusions. This model is advantageous in that it takes into account
interactions of a whole infinite array of inhomogeneities whereas
its deterministic geometry enables an accurate solution of the
model problem. In application to the above problem, only the sim-
plest models of this kind, namely, a composite containing a square
or hexagonal array of equally debonded fibers, were considered. In
the elastic contact model by Shan and Chou (1995), the fiber–ma-
trix interface is assumed completely debonded. Yuan et al. (1997)
simulated the debonded interface by uni- and doubly-symmetric
interface cracks. In these papers, the interface bonding conditions
are fixed in the problem statement. The interfacial failure option
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was implemented by Yeh (1992) and Aghdam et al. (2008) by
means of interface/interphase elements and by Caporale et al.
(2006) who modeled interfacial failure by the brittle-elastic
springs. The model by Teng (2007) contains a periodic square array
of fibers, with a random subset of them assigned to be completely
debonded.

In the first part of this work (Kushch et al., 2010), a complete
analytical solution has been derived for a finite array of interacting,
partially debonded circular inclusions. The method combines the
superposition principle with the complex potentials technique
and results in a simple and efficient numerical algorithm. Here,
we extend this approach to the cell model of fibrous composite
with interface cracks. The multiple fiber cell geometry provides
seamless joint with the adjacent cells. A complete analytical solu-
tion in displacements has been obtained in terms of the periodic
complex potentials. By analytical averaging the local strain and
stress fields, the exact expressions of the effective transverse elas-
tic moduli have been found. Several test problems have been
solved to check an accuracy and numerical efficiency of the meth-
od. An effect of interface crack density and clustering on macro-
scopic stiffness of FRC is estimated.

2. The model problem statement

2.1. Model geometry

Following Kushch et al. (2008), we consider a quasi-random
model of unbounded fibrous composite solid. The model geometry
is periodic, with a period a along the axes Ox1 and Ox2. For this
geometry, any arbitrarily placed, oriented along the Ox1 and Ox2

axes square with side length a can be taken as its representative
unit cell (RUC). It contains the centres of Np of aligned in x3-direc-
tion and circular in cross-section fibers (Fig. 1): within a cell, the
fibers are placed randomly but without overlapping. The fibers
shown by the dashed line do not belong to the cell while occupying
a certain area within it. The whole composite bulk is obtained by
translating the cell in two orthogonal directions.

It should be clearly stated that we formulate and solve the mod-
el problem for a whole composite plane rather than for the RUC.
The RUC concept, however, is convenient for introducing the model
geometry and averaging the periodic strain and stress fields in Sec-

tion 4 and we use it for this purpose. We define geometry of the
unit cell by its side length a and the coordinates ðX1q;X2qÞ of qth fi-
ber center ðq ¼ 1;2; . . . ;NpÞ in the global Cartesian coordinate sys-
tem Ox1x2. Number Np can be taken large sufficiently to simulate
micro structure of an actual disordered composite. We assume
the fibers equally sized, of radius R ¼ 1, and made from the same
material. The fiber volume content is c ¼ Npp=a2.

We introduce also the local, fiber-related coordinate systems
Ox1qx2q with origins in Zq and will use the complex-value variables

z ¼ x1 þ ix2; zq ¼ x1q þ ix2q; ð1Þ

representing the point x ¼ ðx1; x2ÞT in the complex planes Ox1x2 and
Ox1qx2q, respectively. The global complex variable z ¼ zq þ Zq, where
Zq ¼ X1q þ iX2q; q ¼ 1;2; . . . ;Np. The local variables zp ¼ z� Zp re-
late each other by zq ¼ zp � Zpq. Here, Zpq ¼ X1pq þ iX2pq is the com-
plex number determining relative position of the fibers with
indices p and q inside the cell, see Fig. 1. Also, we introduce the com-
plex number Z�pq defining the minimal distance between the arrays
of fibers with indices p and q. Here, we do not assume that the both
fibers are belonging to the same RUC, see Fig. 1. The introduced
numbers are related by Z�pq

��� ��� ¼min�16k1 ;k261jZpq þ ðk1 þ ik2Þaj.
In these notations, the non-overlapping condition of any two fi-

bers in entire composite space is written as Z�pq

��� ��� > 2R. In order to
alleviate an analysis of the model problem, the small positive
parameter known as the ‘‘minimum allowable inter-fiber spacing’’

dmin ¼minp;q Z�pq

��� ���=2R� 1 is often introduced in the multiple fiber

models of FRC (e.g., Chen and Papathanasiou, 2004). In our numer-
ical study, we put dmin ¼ 0:01. The geometry shown in Fig. 1 is gen-
erated using the molecular dynamics algorithm of growing
particles (e.g., Kushch et al., 2008). This model was studied by sev-
eral investigators under assumption that the matrix and fibers are
perfectly bonded along the interfaces Lq; q ¼ 1;2; . . . ;Np. We con-

sider more general case by assuming the part LðqÞc of interface Lq de-

fined by the endpoints zðqÞj ¼ expðihðqÞj Þ ðj ¼ 1;2Þ (Fig. 2) separated

and the part LðqÞb ¼ Lq n LðqÞc being perfectly bonded. In order to sim-
plify the subsequent formulas, we introduce the crack-related

complex variables fq ¼ zq=zðqÞc , where zðqÞc ¼ expðihðqÞc Þ is the crack

midpoint: hðqÞc ¼ ðh
ðqÞ
1 þ hðqÞ2 Þ=2. The interface crack size is measured

by the angle hðqÞ2 � hðqÞ1 ¼ 2hðqÞd ; in the prefect bonding case, hðqÞd ¼ 0.
To the best knowledge of the authors, the multiple fiber RUC model
with interface cracks never been considered before.

Fig. 1. RUC model of fibrous composite.

x1q

x2q

z1
( )q

z2
( )q

q

Lc

( )q

Lb

( )q

q

d

( )q

Fig. 2. A fiber with interface crack.
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